Try the modernized ClinicalTrials.gov beta website. Learn more about the modernization effort.
Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Dimensional Soft and Hard Tissue Alterations Following Single Tooth Extraction in the Anterior Maxilla - A Prospective Clinical Study (Alterations)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT02403700
Recruitment Status : Completed
First Posted : March 31, 2015
Last Update Posted : March 31, 2015
Sponsor:
Collaborator:
ITI Foundation
Information provided by (Responsible Party):
University of Bern

Brief Summary:
Bone modeling after tooth extraction has a major consequence on implant therapy, in particular in the esthetic zone. In esthetic sites, no tissue loss should occur if an optimal esthetic outcome is expected. Recent experimental studies in dogs have shown that neither an immediate implant insertion nor ridge preservation techniques can prevent this bone modeling process.

Condition or disease Intervention/treatment
Dimensional Alterations Device: Cone beam computed tomography (CBCT)

Detailed Description:

Background

The alveolar process is a tooth dependent tissue and develops in conjunction with the eruption of teeth. The size and the form of the tooth, the axis of eruption and eventual inclination determine the local volume as well as the shape of the alveolar process. It has been shown that after removing all teeth in humans, the alveolar ridge undergoes a process of resorption and atrophy.

In a recent animal study, Cardaropoli et al. (2003) assessed the healing events occurring in the extraction socket following tooth removal. The findings of this study demonstrated that the healing of an extraction socket involved a series of events including the formation of a coagulum that was replaced by a provisional connective tissue matrix, woven bone and lamellar bone and bone marrow. On day 30, mineralized bone occupied 88% of the socket volume. Hard tissue formation had started already after 2 weeks of healing, and then, after a month, the socket was filled with woven bone. Later, the woven bone was gradually replaced by lamellar bone and bone marrow. After 3 months of healing, a hard tissue bridge was consistently found to cover the crestal portion of the extraction site, which was formed by woven bone and lamellar bone. Araújo et al. (2005) analysed in an experimental study in dogs the ridge alterations following the extraction of premolars in the mandible. The authors observed that the resorption of the buccal and lingual walls occurred in two overlapping phases. Phase 1: The bundle bone - that lost its function and blood supply - was resorbed and replaced with woven bone. Vertical resorption was considerably greater on the buccal aspect of the alveolar crest, since this bone wall was much thinner then the lingual wall and was primarily comprised of bundle bone. Phase 2: An additional resorption occurred from the outer surfaces of both bone walls. The reason for this additional resorption has not been clearly ascertained. The hypothesis could be: Impaired superficial vascularisation by raising a mucoperiosteal flap; adjusting to the lack of continuous function; or the reestablishment of the ridge shape, which is genetically determined in the absence of teeth. A recent animal study confirmed that flap elevation plays an important role for a more pronounced superficial bone resorption following extraction , therefore, it seems critical that tooth extraction should be carried out without elevation of a mucoperiosteal flap. Even ridge preservation techniques are not able to prevent the contour changes after tooth extraction.

Objective

The aim of the present clinical study is to examine the dimensional changes of the alveolar ridge following single tooth extraction in the anterior maxilla of patients, in particular on the facial aspect of the alveolar ridge. These horizontal and vertical changes will be sequentially documented up to 8 weeks of healing before an implant is inserted using the concept of early implant placement. The study will also provide information about the anatomic situation of the facial bone wall in the anterior maxilla at the time of extraction, and the prevalence and extent of bone deficiencies on the facial aspect, when teeth need to be extracted.

Methods

To document these changes over time, two methods will be applied. Firstly, two cone beam computed tomographies (CBCT) will be obtained, one directly after tooth extraction, the other one at 8 weeks of socket healing prior to implant placement. The two CBCT's will be analyzed with a novel software program (InVivo Dental). Secondly, consecutive impressions will be made at day 0 (day of extraction), day 14, 28, 42, and 56 to digitally produce virtual 3D study models. These models can be analyzed with another software program (Geomagic) to document the variations of the soft tissue in the extraction site.

Layout table for study information
Study Type : Observational
Actual Enrollment : 39 participants
Observational Model: Cohort
Time Perspective: Prospective
Official Title: Ridge Alterations Following Single Tooth Extraction in the Anterior Maxilla - A Prospective Clinical Study
Study Start Date : October 2009
Actual Primary Completion Date : May 2012
Actual Study Completion Date : November 2012

Group/Cohort Intervention/treatment
All study participants
One group observation study
Device: Cone beam computed tomography (CBCT)
Dimensional changes are documented over a healing period of 8-weeks following single tooth extraction. To document these changes over time, two methods will be applied. Firstly, two cone beam computed tomographies (CBCT) will be obtained, one directly after tooth extraction, the other one at 8 weeks of socket healing prior to implant placement. The two CBCT's will be analyzed with a novel software program (InVivo Dental). Secondly, consecutive impressions will be made at day 0 (day of extraction), day 14, 28, 42, and 56 to digitally produce virtual 3D study models. These models can be analyzed with another software program (Geomagic Studi 10) to document the variations of the soft tissue in the extraction site.




Primary Outcome Measures :
  1. Change from baseline in bone loss [ Time Frame: 2-, 4-, 6-, 8-weeks ]
    Measured by segmented surface model superimpositions. Changes in bone loss between baseline and 8 week healing period using CBCT technology. From the Digital Imaging and Communications in Medicine (DICOM) files two surface mesh model were generated, which were superimposed and the changes were subsequently analyzed.

  2. Change from baseline in soft tissue loss [ Time Frame: 2-, 4-, 6-, 8-weeks ]
    Changes in soft tissue loss at baseline, 2-, 4-, 6- and 8 weeks were analyzed be dental impressions, which were superimposed as well and the changes were analyzed.


Secondary Outcome Measures :
  1. Correlation between baseline facial bone thickness and dimensional soft tissue alterations during healing. [ Time Frame: At baseline and 8-weeks ]
    To measure correlation, the Spearman Rank Correlation Coefficient was calculated. Nonparametric models for longitudinal data were applied to analyze the impact of bone wall phenotype and healing period upon dimensional alterations.



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Sampling Method:   Non-Probability Sample
Study Population
The group is selected from the referred patient pool. Age 18 or older. Absence of significant medical conditions. Sites with a need for single tooth extraction in the anterior maxilla.
Criteria

Inclusion Criteria:

  • Signed informed consent
  • Age 18 years or older
  • Absence of significant medical conditions
  • Patients with healthy or effectually treated periodontal conditions
  • Candidate for single tooth replacement in the anterior maxilla

Exclusion Criteria

  • General contraindications for dental and/or surgical treatments
  • Concurrent or previous immunosuppressant, bisphosphonate or high dose corticosteroid therapy
  • Inflammatory and autoimmune disease of oral cavity
  • Uncontrolled diabetes
  • Pregnant or lactating women

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT02403700


Locations
Layout table for location information
Switzerland
Dep. of Oral Sugery and Stomatology
University of Bern, Bern, Switzerland, 3010
Sponsors and Collaborators
University of Bern
ITI Foundation
Investigators
Layout table for investigator information
Principal Investigator: Chappuis Dep. Oral surgery and Stomatology, University of Bern
Publications of Results:

Publications automatically indexed to this study by ClinicalTrials.gov Identifier (NCT Number):
Layout table for additonal information
Responsible Party: University of Bern
ClinicalTrials.gov Identifier: NCT02403700    
Other Study ID Numbers: 079/09
Grant No. 624_2009 ( Other Identifier: ITI Foundation, Basel, Switzerland )
First Posted: March 31, 2015    Key Record Dates
Last Update Posted: March 31, 2015
Last Verified: March 2015
Keywords provided by University of Bern:
bone remodeling
bone resorption
three-dimensional imaging
clinical trial
dental implant
maxilla
bone healing