Try the modernized beta website. Learn more about the modernization effort.
Working… Menu

Development of iPS From Donated Somatic Cells of Patients With Neurological Diseases

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details. Identifier: NCT00874783
Recruitment Status : Recruiting
First Posted : April 3, 2009
Last Update Posted : February 15, 2022
Information provided by (Responsible Party):
Hadassah Medical Organization

Brief Summary:

Human fibroblasts and possibly other human somatic cells may be reprogrammed into induced pluripotent stem (iPS) cells by the forced expression of transcription factors (1-5). The iPS cells seem to share many properties with human embryonic stem cells.

Induced pluripotent stem cells potentially may be useful in the future as an unlimited source of cells for transplantation.

The major goal of the project is to develop human iPS cells from cell cultures from skin biopsies or the patient's hair. The iPS cells will be developed primarily for modeling diseases and drug discovery as well as basic research, and for developing the technology that may eventually allow the use of iPS cells for future transplantation therapy. The iPS cells developed in the course of this application are not intended for use in transplantation therapy. Future development of iPS cells for clinical transplantation therapies will be subjected to the appropriate authorization by ethical and regulatory committees.

Condition or disease
Neurodegenerative Disorders

Detailed Description:

The derivation of human iPS cells (1-5) open new avenues to model human diseases since it may now be possible to develop iPS cells from the fibroblasts or other somatic cells of patients with various conditions. These iPS cells may be directed to differentiate into the cells which are affected in specific conditions. Abnormalities in the development of the affected cells as well as altered survival or function of the cells may be studied. Thus iPS cells may serve as an invaluable model for the study of the pathogenesis of human diseases and may also serve for the development of new drugs, and high throughput screening of molecules for toxic or therapeutic effects.

In addition to the great potential of iPS cells for disease modelling and transplantation therapy, the cells may have broad applications in basic research in various areas such as reprogramming, basic development and others.

At present, it is still unclear whether the properties of iPS cells are identical to those of hESCs. Initial data suggest that human iPS cells are indeed similar to hESCs in their phenotype, epigenetic status of pluripotent self-specific genes, telomerase activity, gene expression profile and in their capability to differentiate into progeny of the three germ layers both in vitro and in vivo in teratomas (2, 3, 5). In the mouse system, directed differentiation of iPS cells into bone marrow repopulating hematopoietic stem cells and functional dopaminergic neurons was demonstrated (6, 7). However, incomplete silencing of the constitutive expression of the transcription factors that were used to induce reprogramming can probably interfere with differentiation (1). Further studies are required to confirm that the developmental potential and biological properties of iPS cells are identical to hESC.

Currently, retroviral vectors are most commonly used to introduce and express the transgenes which reprogram the somatic nucleus (1-5). The use of retroviral vectors, which integrate into the host cell genome, may cause hazardous insertion mutagenesis. Moreover, the use of potentially oncogenic transcription factors, such as c-Myc, significantly limits the clinical use of human iPS cells for future cell therapy. However, successful derivation of iPS cells was demonstrated without the forced expression of c-Myc. The decreased efficiency of reprogramming, in the absence of overexpressed c-Myc, may be improved by molecules which act via epigenetic mechanisms. Moreover, successful derivation of iPS cells was recently reported with the use of non-integrating adeno viral vectors or repeated transfections. Thus it appears that with further developments, it may be possible in the future to safely induce pluripotent cells from somatic cells for therapeutic applications.

Layout table for study information
Study Type : Observational
Estimated Enrollment : 120 participants
Observational Model: Case-Control
Time Perspective: Prospective
Official Title: Derivation of Induced Pluripotent Stem Cells From Somatic Cells Donated by Patients With Neurological Diseases for the Study of the Pathogenesis of the Disorders and Development of Novel Therapies
Actual Study Start Date : April 2009
Estimated Primary Completion Date : December 2025
Estimated Study Completion Date : December 2025

Biospecimen Retention:   Samples With DNA
donation of a skin specimen of up to 10mm in diameter from skin which will be removed in a surgical operation from a patient who is scheduled to undergo an operation for medical reasons and with no relation to the study at hand.

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Sampling Method:   Non-Probability Sample
Study Population
120 donors to cover 10 different neurodegenerative disorders (previously specified) based on 10 donors per disorder and 20 healthy control donors.

Inclusion Criteria:

  • Donors suffering from different (specified) neurodegenerative disorders scheduled to undergo surgery for medical reasons or will donate a single or a few hairs--to be removed intact from the scull or other areas in the body.
  • Healthy donors scheduled to undergo surgery for medical reasons or will donate a single or a few hairs--to be removed intact from the scull or other areas in the body.

Exclusion Criteria:

  • None

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT00874783

Layout table for location contacts
Contact: Benjamin E. Reubinoff, MD PhD 011-972-2-677-4569
Contact: Shelly E Tannenbaum, MSQA 97226777947

Layout table for location information
Hadassah Ein Kerem Recruiting
Jerusalem, Israel, 9112100
Contact: Benjamin E Reubinoff, Professor    972-2-6776424/5   
Contact: Shelly E Tannenbaum, MSQA    972-2-6775700   
Sponsors and Collaborators
Hadassah Medical Organization
Layout table for investigator information
Principal Investigator: Benjamin E Reubinoff, MD, PhD Hadassah Medical Organization
Layout table for additonal information
Responsible Party: Hadassah Medical Organization Identifier: NCT00874783    
Other Study ID Numbers: 0599-08-HMO-CTIL
First Posted: April 3, 2009    Key Record Dates
Last Update Posted: February 15, 2022
Last Verified: February 2022
Keywords provided by Hadassah Medical Organization:
Amyotrophic Lateral Sclerosis
Familial Dysautonomia
Parkinson's Disease
Alzheimer's Disease
Age Related Macular Degeneration
Retinitis Pigmentosa
Huntington's Disease
Machado - Joseph Disease
SMA - Spinal Muscular Atrophy
Ataxia Telangiectasia
Additional relevant MeSH terms:
Layout table for MeSH terms
Nervous System Diseases
Neurodegenerative Diseases