Working… Menu

A Clinical Study of the Use of Brushite as Primary Stabilizer in Immediate Dental Implantation

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Identifier: NCT00299585
Recruitment Status : Suspended (manufacturer could not finance the study)
First Posted : March 7, 2006
Last Update Posted : January 6, 2010
Information provided by:
Hadassah Medical Organization

Brief Summary:

Objective: The evaluation of "PD" VitalOs Cement, an injectable brushite, as a stabilizer of dental implants and a potential source for bone augmentation.

Methods: Forty (40) patients needing dental implants will be treated where needed with "PD" VitalOs Cement gapping half of their sites whereas the other half will be gapped with Bio-oss demineralized bone and BioGuide membrane.

Condition or disease Intervention/treatment Phase
Alveolar Ridge Augmentation Dental Implants Procedure: using "PD" VitalOs Cement with dental implants Phase 2

Detailed Description:

Bone fractures or bone loss in specific sites are cases where a bone graft is sometimes needed to provide bone augmentation. For bone fractures, these are typically metaphyseal or maxillofacial fractures with risk of malunion or non-union. Bone loss can happen under various circumstances: it can be a consequence of a systemic disease like osteoporosis or of a surgical intervention like the extraction of a tooth or the removal of a bone cyst or tumor.

When a bone graft is required the gold standard still widely used is autogenous cancellous bone. However, the graft harvesting procedure is invasive and increases patient morbidity (lengthened surgical procedure, increased risk of infection). Moreover, the availability of autologous grafts is limited, especially in elderly patients. This has been the rationale for studying alternative sources for bone grafts.

The first alternative is allografts: they are usually obtained from cadavers. The advantages include elimination of a patient donor site, hence reduced surgical time and decreased blood loss and risk of infection. The principal shortcomings are the availability, the possible rejection of the graft and the risk of disease transmission.

Grafts of animal origin (xenografts) are also an option, even though not totally risk-free when it comes to disease transmission.

A third alternative to autologous bone is to use synthetic materials. Extensive research has been performed to develop such materials since the 80's. The majority of them are based on calcium phosphate compounds, made up of the same ions as those of the natural mineral phase of bone. These products are readily available, eliminate the risk of disease transmission or immunogenic response (allografts) and bypass the need for an additional surgical procedure (autografts). These materials are presented under either of the three forms: granules, pre-formed blocks or cements.

Granules and pre-formed blocks are generally made up of β-TCP, Hydroxyapatite (HA), or a mix of both. Depending mainly on their chemical composition, their manufacturing process and their porosity, they degrade more or less rapidly.

Calcium phosphate cements consist generally of a liquid and a powder which harden upon mixing. The final product phase can be hydroxyapatite, or another calcium phosphate phase like dahllite or brushite. The advantage of cements over pre-formed blocks is that they can be injected, shaped and hardened in situ, ensuring optimum bone-implant contact and minimally invasive surgery. Once hardened, they exhibit cohesive properties that granules cannot provide. Most of the calcium phosphate cements available on the market are hydroxyapatite cements. However, for some applications like periodontitis or peri-implant gap filling, their resorption rate is too slow, hampering their clinical applicability for these indications. The advantage of the brushite phase in the hardened cement is that it degrades faster than hydroxyapatite, allowing a more rapid bone regeneration. The purpose of this study is to evaluate the efficacy of "PD" VitalOs Cement as a primary stabilizer and bone augmenting source in dental implantology.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 40 participants
Allocation: Randomized
Intervention Model: Parallel Assignment
Masking: Single (Participant)
Primary Purpose: Treatment
Official Title: Phase 2 Clinical Study on the Efficacy of Injectable Brushite Bone Cement in Bone Augmentation and Dental Implant Stabilization
Study Start Date : December 2007
Actual Primary Completion Date : May 2008
Estimated Study Completion Date : November 2008

Intervention Details:
  • Procedure: using "PD" VitalOs Cement with dental implants
    supporting dental implants with Vitalos bone cement

Primary Outcome Measures :
  1. X-ray evaluation of osseointegration [ Time Frame: 3-6 12 months ]
  2. clinical assesment [ Time Frame: 3-6 and12 ]

Secondary Outcome Measures :
  1. long-term follow-up for osseointegration: clinical and X-ray [ Time Frame: 12-18-24 months ]

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   Child, Adult, Older Adult
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes

Inclusion Criteria:

  • Partially or fully edentulous patients who need dental implants to support a prosthesis

Exclusion Criteria:

  • Patients with uncontrolled diabetes
  • Chemotherapy
  • Immune suppressed
  • Radiotherapy to head and neck in the last five years

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT00299585

Layout table for location information
Hadassah Medical Organization,
Jerusalem,, Israel, 91120
Sponsors and Collaborators
Hadassah Medical Organization
Layout table for investigator information
Study Chair: Michael M Perez Davidi, DMD Hadassah Medical Organization
Principal Investigator: Nardi Caspi, DMD Hadassah Medical Organization
Additional Information:
Publications of Results:
Other Publications:
Layout table for additonal information
Responsible Party: Arik Tzukert, DMD, Hadassah Medical Organization Identifier: NCT00299585    
Other Study ID Numbers: 191059 HMO-CTIL
First Posted: March 7, 2006    Key Record Dates
Last Update Posted: January 6, 2010
Last Verified: December 2007
Keywords provided by Hadassah Medical Organization:
dental implant
dental implantation
bone cement
calcium phosphate
bone augmentation
primary stability
immediate implantation
Mandibular Ridge Augmentation
Maxillary Ridge Augmentation
synthetic implants for rebuilding the alveolar ridge