The Role of SDF-1/CXCR4 in Metastasis of Oral Squamous Cell Carcinoma

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Identifier: NCT00173849
Recruitment Status : Unknown
Verified June 2005 by National Taiwan University Hospital.
Recruitment status was:  Not yet recruiting
First Posted : September 15, 2005
Last Update Posted : September 15, 2005
Information provided by:
National Taiwan University Hospital

Brief Summary:
Investigate the role of SDF-1/CXCR4 in the metastasis of oral squamous cell carcinoma

Condition or disease
Oral Cancer

  Hide Detailed Description

Detailed Description:

Oral cancer is the most common head and neck malignancy, constituting near 9% of all cancers (1). Squamous cell carcinoma (SCC) is the most common histopathologic type of the oral malignancies, accounting for more than 90% of cancers occurring in this region (2). The presence or absence of regional lymph node metastases is the single most important factor affecting prognosis in patients with oral cancer. Cure rates for oral cancer are decreased by approximately 50 percent in patients having cervical lymph node metastasis (3).

Tumor metastasis is the hallmark of malignancy, and is probably a result of the interaction between tumor cells and a supportive microenvironment. Malignant cells that have the capability to metastasize to a particular organ may have various properties supporting their tissue invasion or growth such as enhanced adherence to the microvascular cells of the organ, higher responsiveness to chemotactic signals released from the target organs and increased response to local soluble or tissue associated growth signals in the target organ (4,5). Though there are several molecules expressed or produced in cancer cells are considered the metastatic factors, it remains unknown which factors produced by the lymph node or tissue affect the metastasis of cancer cells.

Chemokines are a large family of pro-inflammatory polypeptide cytokines, consisting of small (7–15 kDa), structurally related heparin-binding proteins. They are grouped into CXC chemokines and CC chemokines, on the basis of the characteristic presence of four conserved cysteine residues (6-8). Chemokines are produced locally in the tissues and act on target cells through G-protein-coupled receptors, which are characterized structurally by seven transmembrane spanning domains. Chemokines are involved in the attraction and activation of mononuclear and polymorphonuclear leukocytes to sites of inflammatory responses, bacterial or viral infections, allergy, cardiovascular diseases and wound healing (4, 8-13). Chemokines are known to also function as regulatory molecules in the leukocyte maturation, trafficking, and homing of T and B lymphocytes, in the development of lymphoid tissues, and in dendritic cell maturation (14,15). Other functions of chemokines have been described more recently, particularly for the CXC chemokines. The role of chemokines in malignant tumors is not clear yet. Some chemokines may enhance innate or specific host immunity against tumor dissemination. On the other hand, some may advocate tumor growth and metastasis by promoting tumor cell proliferation, migration or angiogenesis in tumor tissue (4). Reports have suggested that several types of cancer, such as breast (16), ovary (17), prostate (18), kidney (19), brain (20), lung (21), and thyroid (22), expressed the chemokine receptor and used the chemokines to metastasize to the target organ as in the homing of hematopoietic cells.

SDF-1 belongs to the CXC chemokine family and is a ligand for CXCR4 (23, 24). SDF-1 was initially cloned by Tashiro et al. (25) and later identified as a growth factor for B cell progenitors, a chemotactic factor for T cells and monocytes, and in B-cell lymphopoiesis and bone marrow myelopoiesis (23, 26–27). Most of the chemokine receptors interact with pleural ligands, and vice versa, but the SDF-1/CXCR4 receptor ligand system has been shown to involve a one-on-one interaction (28, 29). Recently, several studies have been conducted to detect the mRNA expression of CXCR4 and SDF-1 in solid tumors. The results are not uniform, and the relevance to cancer progression is not determined (30, 31). Sehgal et al. (30, 32) concluded that CXCR4 plays an important role of proliferation and tumorigenic properties of human glioblastoma tumors. Muller et al. (33) have reported that SDF-1 signaling through CXCR4 interaction appears to determine the directional migration of breast cancer cells through the basement membrane. Furthermore in vivo, the interaction between SDF-1 and CXCR4 significantly represses the metastatic potential of breast cancer cells to lymph node and lung. Barnard and his colleagues (34, 35) showed the contrary results that CXCR4 mRNA expression was reduced in hepatocellular carcinoma tissue when compared with noncancerous tissue, but was not changed in colon, esophageal, and gastric cancer. They also found reduced mRNA expression of SDF-1 in these malignant tissues (31). Thus, there is a diversity of views on the role of the SDF-1/CXCR4 receptor ligand system in malignant tissues. And such studies are limited in oral cancer.

Since metastasis of oral cancer occur frequently through the lymphatic system, and metastasis is a key prognostic factor for the disease. Evaluation of the relationship between SDF-1/CXCR4 system and metastasis in oral cancer could help us understand whether this system is important in the metastasis of this disease.

We hypothesized that SDF-1/CXCR4 (ligand/receptor) system plays an important role in oral cancer metastasis. To test this hypothesis, we will investigate (1) the distribution of CXCR4 protein expression in cancer and lymph node tissues by means of immunohistochemical analysis of tissue samples obtained from surgical operation, (2) the relationship between CXCR4 expression and clinicopathological findings with special reference to cancer metastasis, (3) the expression of SDF-1 and CXCR4 in the cancer cell lines cells and tissues, (4) the chemotactic activity and the growth-promoting effect of SDF-1 on cancer cell lines cells, (5) the role of Src, MAPK, and Akt signal transduction pathway in this response, (6) the effect of the blocking agent on this response.

Undoubtedly, the findings of this study will help us understand whether SDF-1/CXCR4 system could be a focal point of anti-cancer research. If oral SCC that express high levels of CXCR4 show a consistently higher incidence of lymphatic and distant metastasis, then blocking SDF-1/CXCR4 signaling may be a novel approach to inhibit metastasis in these patients. The development of SDF-1/CXCR4 system antagonists will provide opportunity to improve the survival rate.

Study Type : Observational
Enrollment : 100 participants
Allocation: Random Sample
Observational Model: Natural History
Time Perspective: Longitudinal
Time Perspective: Retrospective/Prospective
Study Start Date : January 2006
Study Completion Date : July 2006

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Ages Eligible for Study:   30 Years to 75 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No

Inclusion Criteria:

  • Oral squamous cell carcinoma

Exclusion Criteria:

  • other pathological type

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT00173849

Contact: Ching-Ting Tan, MD, PhD 886-2-23123456 ext 5222

National Taiwan University Hospital Not yet recruiting
Taipei, Taiwan, 100
Contact: Ching-Ting Tan, MD, PhD    886-2-23123456 ext 5222   
Sponsors and Collaborators
National Taiwan University Hospital
Principal Investigator: Ching-Ting Tan, MD, PhD National Taiwan University Hospita; Identifier: NCT00173849     History of Changes
Other Study ID Numbers: 9461700656
First Posted: September 15, 2005    Key Record Dates
Last Update Posted: September 15, 2005
Last Verified: June 2005

Keywords provided by National Taiwan University Hospital:
oral cancer
stromal-cell-derived factor-1(SDF-1)

Additional relevant MeSH terms:
Mouth Neoplasms
Head and Neck Neoplasms
Neoplasms by Site
Mouth Diseases
Stomatognathic Diseases