Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Computer Models of Airways in Children and Young Adults With Sleep Apnea and Down Syndrome (DYMOSA)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT01902407
Recruitment Status : Enrolling by invitation
First Posted : July 18, 2013
Last Update Posted : July 11, 2019
Sponsor:
Collaborator:
National Heart, Lung, and Blood Institute (NHLBI)
Information provided by (Responsible Party):
Children's Hospital Medical Center, Cincinnati

Tracking Information
First Submitted Date May 7, 2013
First Posted Date July 18, 2013
Last Update Posted Date July 11, 2019
Study Start Date March 2011
Estimated Primary Completion Date December 2027   (Final data collection date for primary outcome measure)
Current Primary Outcome Measures
 (submitted: July 16, 2013)
Measurement of critical closing pressure of the airway-Sleep MRI [ Time Frame: Day 1 ]
Measured in mmH2O
Original Primary Outcome Measures Same as current
Change History Complete list of historical versions of study NCT01902407 on ClinicalTrials.gov Archive Site
Current Secondary Outcome Measures Not Provided
Original Secondary Outcome Measures Not Provided
Current Other Pre-specified Outcome Measures Not Provided
Original Other Pre-specified Outcome Measures Not Provided
 
Descriptive Information
Brief Title Computer Models of Airways in Children and Young Adults With Sleep Apnea and Down Syndrome
Official Title Dynamic Computational Modeling of Obstructive Sleep Apnea in Down Syndrome
Brief Summary

The purpose of this research study is to develop a way of predicting with computers how surgery on the airway will affect night time breathing called Obstructive Sleep Apnea (OSA) in children with Down Syndrome.

A research measurement for airway resistance will also be done during the clinical sleep MRI. The airway resistance measurement will take about 10 minutes and is done during sleep. The airway resistance measurement is called critical closing pressure (Pcrit).

Detailed Description

This is a proof-of-concept study to determine if a dynamic computational model can be used to predict surgical outcomes. If the results from the study are positive, they can be used to help design a larger subsequent study. The purpose of this research is to develop a computational model that simulates OSA and different surgical treatments for OSA in children and young adults with DS. Thus, the only population that will be studied is children and young adults with DS who have persistent OSA despite having previously undergone T&A.

Obstructive sleep apnea (OSA) occurs in 50-100% of patients with Down syndrome (DS) and can significantly cause and exacerbate medical problems in these patients. Current surgical management of children with DS is imperfect. There are variable surgical success rates for both first line surgery of palatine tonsillectomy and adenoidectomy (T&A) as well as secondary surgeries performed if and when T&A fails. There is a critical need for a diagnostic modality that takes into account airway anatomy, tissue compliance, and collapsibility to be able to predict surgical outcome and improve surgical planning in these patients. Our central hypothesis is that upper airway flow-structure interaction (FSI) modeling using three-dimensional (3-D) computational simulations from dynamic magnetic resonance imaging (MRI or MR) data can be used to predict surgical outcomes for children with DS who have OSA despite previous T&A. The long-term goal is to improve surgical outcome of children with Down syndrome and OSA by creating an accurate FSI predictive model. Such a diagnostic tool would help tailor surgical procedures to be more effective as well as identify and avoid unnecessary or unhelpful surgical procedures. These created models can in future be adjusted and applied to other populations with OSA. Our specific aims include: 1) In children with Down syndrome and persistent OSA despite previous T&A, to collect data characterizing upper airway anatomy, tissue compliance, and collapsibility; 2) to generate and validate individualized dynamic FSI models for each child and 3) to use the validated dynamic computational models to predict the success of surgical treatment on children with Down syndrome who have persistent OSA despite previous T&A. This work is innovative as it uses dynamic rather than static MR imaging data and applies a unique computational model that accurately captures the unsteadiness of the flow and accounts for the interaction between the airflow and the surrounding airway flexible structures.

Research components will involve two parts of the project. The first will be the generation, validation and use of computational models from MRI data. The second is the measure of critical closing pressure (Pcrit) on DS subjects who are at least three months post T&A, have OSA and are being evaluated for possible additional airway surgery. The measurement of Pcrit will be done during the research PSG (in the Sleep Center) and during the clinical sleep MRI (in the MRI suite). Pcrit measurements will be acquired with the use of a Continuous Positive Air Pressure (CPAP) mask during sleep. Additionally, to measure improvement in OSA based on quality of life (QOL) and sleep, the Obstructive Sleep Apnea questionnaire (OSA18) will be administered both preoperatively and postoperatively.

Study Type Observational
Study Design Observational Model: Cohort
Time Perspective: Prospective
Target Follow-Up Duration Not Provided
Biospecimen Not Provided
Sampling Method Non-Probability Sample
Study Population

All patients seen at CCHMC (up to 90 years of age) who are scheduled to have a clinical sleep MRI or CT scan for their OSA airway or lung disease.

Scheduled for both Sleep diagnostic tests (Sleep MRI and CT scans)

Condition
  • Down Syndrome
  • Obstructive Sleep Apnea
Intervention Not Provided
Study Groups/Cohorts Diagnostic MRI and CT scan of the airway

All patients seen at CCHMC (up to 90 years of age) who are scheduled to have a clinical sleep MRI or CT scan for their OSA airway or lung disease.

Scheduled for both Sleep diagnostic tests (Sleep MRI and CT scans).

Publications * Mahmoud M, Ishman SL, McConnell K, Fleck R, Shott S, Mylavarapu G, Gutmark E, Zou Y, Szczesniak R, Amin RS. Upper Airway Reflexes are Preserved During Dexmedetomidine Sedation in Children With Down Syndrome and Obstructive Sleep Apnea. J Clin Sleep Med. 2017 May 15;13(5):721-727. doi: 10.5664/jcsm.6592.

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Recruitment Information
Recruitment Status Enrolling by invitation
Estimated Enrollment
 (submitted: July 16, 2013)
73
Original Estimated Enrollment Same as current
Estimated Study Completion Date December 2027
Estimated Primary Completion Date December 2027   (Final data collection date for primary outcome measure)
Eligibility Criteria

Inclusion Criteria:

  1. All patients seen at CCHMC (up to 90 years of age) who are scheduled to have a clinical sleep MRI or CT scan for their OSA airway or lung disease.
  2. Both Sleep diagnostic tests (Sleep MRI and CT scans).

Exclusion Criteria:

  • Those patients whose body weight (>350 pounds) or circumference is greater than what can be safely accommodated by the MRI scanner
  • Patients with pacemakers or other non-MRI compatible devices
  • Patients with extensive dental hardware that causes MR artifact obscuring visualization of the area of interest.
  • Body Mass Index (BMI) > 40
Sex/Gender
Sexes Eligible for Study: All
Ages 1 Year to 90 Years   (Child, Adult, Older Adult)
Accepts Healthy Volunteers No
Contacts Contact information is only displayed when the study is recruiting subjects
Listed Location Countries United States
Removed Location Countries  
 
Administrative Information
NCT Number NCT01902407
Other Study ID Numbers CIN001-Dymosa
R01HL105206-01 ( U.S. NIH Grant/Contract )
Has Data Monitoring Committee No
U.S. FDA-regulated Product Not Provided
IPD Sharing Statement Not Provided
Responsible Party Children's Hospital Medical Center, Cincinnati
Study Sponsor Children's Hospital Medical Center, Cincinnati
Collaborators National Heart, Lung, and Blood Institute (NHLBI)
Investigators
Principal Investigator: Raouf Amin, MD Children's Hospital Medical Center, Cincinnati
PRS Account Children's Hospital Medical Center, Cincinnati
Verification Date July 2019