ClinicalTrials.gov
ClinicalTrials.gov Menu

Non-Invasive Imaging of Atherosclerosis

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT01418313
Recruitment Status : Recruiting
First Posted : August 17, 2011
Last Update Posted : January 23, 2018
Sponsor:
Collaborators:
National Heart, Lung, and Blood Institute (NHLBI)
National Institutes of Health (NIH)
New York University School of Medicine
Information provided by (Responsible Party):
Icahn School of Medicine at Mount Sinai

August 5, 2011
August 17, 2011
January 23, 2018
September 2011
June 2020   (Final data collection date for primary outcome measure)
Correlation between imaging and biomarkers of atherosclerosis [ Time Frame: 5 years ]
R correlation coefficient
Same as current
Complete list of historical versions of study NCT01418313 on ClinicalTrials.gov Archive Site
  • DCE-MRI kinetic parameters [ Time Frame: 3 years ]
    Parameters evaluating the uptake of MR contrast agent in atherosclerotic plaques. Kinetic parameters Ktrans (1/min) , ve (a.u.), vp (a.u.), Kep (1/min)
  • FDG uptake parameters [ Time Frame: 3 years ]
    Parameters evaluating the uptake of FDG in atherosclerotic plaques. Standardized uptake value (SUV) (a.u.); target to background ratio (TBR) (a.u.)
Same as current
Not Provided
Not Provided
 
Non-Invasive Imaging of Atherosclerosis
In Vivo Molecular Imaging (MRI) of Atherothrombotic Lesions
The purpose of this study is to develop and validate novel magnetic resonance imaging (MRI), dynamic contrast enhanced (DCE)-MRI and positron emission tomography (PET)/MR techniques for the detection and risk stratification of patients with atherosclerosis.
Atherosclerosis is responsible for the majority of disabilities and deaths in developed countries. Previous studies have shown that sudden clinical events correlate highly with plaque composition and the degree of plaque inflammation. These results stress the importance of developing non-invasive surrogate markers of plaque inflammation to detect asymptomatic high-risk plaques in clinical settings. Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) and 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) with combined computed tomography (CT) have shown promise in characterizing and quantifying metabolic activity (i.e., glycolysis/ inflammation) in atherosclerosis, by targeting the presence of neovessels (DCE-MRI) and inflammatory cells such as macrophages (18F-FDG PET) in plaques of both animal and human subjects. However, several challenges need to be overcome prior to translating these imaging approaches to clinical practice. A significant obstacle to adapting conventional DCE-MRI approaches to atherosclerosis includes the necessity to image with high spatial resolution to capture plaque heterogeneity. This can be achieved with longer scan times, but conflicts with need for high temporal resolution required for accurate arterial input function sampling and quantification of contrast agent uptake. In Aim 1, the investigators will develop and validate a novel dual-imaging sequence for DCE-MRI of atherosclerosis where the investigators acquire a high temporal resolution, but low spatial resolution, AIF image and a high spatial resolution/low temporal resolution vessel wall image to allow accurate quantification of contrast agent uptake within plaques. This approach will be compared to conventional approaches in both a rabbit model of atherosclerosis and in human subjects. The limited spatial resolution of conventional PET scanners has an impact on the accuracy of 18F-FDG PET quantification in atherosclerotic plaques because of the partial volume effect (PVE). A posteriori PVE correction methods using high-resolution anatomical images acquired with a different imaging modality can improve quantification, but are challenging since they require accurate co-registration between the another imaging modality and PET. MR is an ideal choice for this second imaging modality as it produces high-resolution anatomical images without the use of ionizing radiation. A combined MR/PET scanner may therefore be better suited for developing novel PVE correction methodologies. As part of Aim 2, the investigators will develop and validate the combined MR-PET(FDG) imaging approach to improve the quantification of atherosclerotic plaque metabolic activity. Attenuation correction based on MR will be compared with CT based attenuation correction. Approaches to improved PVE correction and optimal circulation time for plaque imaging will also be validated in both rabbits and humans. Finally, imaging parameters derived from the improved DCE-MRI and MR- PET(FDG) will be validated in patients undergoing carotid endarterectomy (CEA), with the primary endpoint of establishing the relationship between imaging and histological markers of plaque inflammation. Additionally, the investigators will assess the relationship (if any) with serum biomarkers and, as an exploratory endpoint, the investigators will study by real time PCR the relationship of imaging with the gene expression of markers of plaque vulnerability.
Observational
Observational Model: Cohort
Time Perspective: Cross-Sectional
Not Provided
Retention:   Samples With DNA
Description:
Whole Blood, Endarterectomy Specimens
Non-Probability Sample
Subjects in the New York area referred by primary care physician, or recruited through Lifeline Screening or ResearchMatch.org, or Mount Sinai Broadcast emails and flyers.
Atherosclerosis
Not Provided
  • DCE-MRI
    Magnetic resonance imaging (MRI) with and without FDA approved contrast agents: MRI is a non invasive imaging technique used to visualize the internal structure of the body in detail. The MRI machine is an oversized magnet that is always on. It will be used in this study to provide anatomical and functional (MRI with contrast) information about atherosclerotic plaques.
  • PET/CT and PET/MR
    Positron emission tomography (PET)/ computer tomography (CT): PET is a nuclear medicine imaging technique, which produces images of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Nowadays PET imaging is most useful in combination with anatomical imaging, such as CT scanners, thereby PET scanners are now available with integrated high-end multi-detector row CT scanners. Because the two scans can be performed in immediate sequence during the same session and with the patient not changing position between the two scans, areas of abnormality on PET images can be directly correlated with anatomy on the CT images.
  • PET/MR
    Positron emission tomography (PET)/MRI: PET is a nuclear medicine imaging technique, which produces images of functional processes in the body. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. To avoid the additional radiation deriving from the CT scan during PET/CT imaging, nowadays PET imaging can be paired with MR anatomical images.

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Recruiting
159
Same as current
June 2020
June 2020   (Final data collection date for primary outcome measure)

Inclusion Criteria:

  • Volunteers with carotid artery disease who are MRI and CT compatible.
  • All subjects will have either a

    • clinical diagnosis of atherosclerosis,
    • and/or risk factors
    • and/or family history of disease

Exclusion criteria:

  • Glomerular filtration rate <30mg/ml (for MRI with contrast)
  • Subjects who have any ferromagnetic implants (e.g. aneurysm clip, ICD, pacemaker, etc.) or a condition that may be contraindicated for the MRI procedure (e.g. claustrophobia )
  • Pregnant patients will be excluded from the present study.
Sexes Eligible for Study: All
20 Years and older   (Adult, Older Adult)
No
Contact: Juan G Aguinaldo, MD 212-824-8459 gilbert.aguinaldo@mssm.edu
United States
 
 
NCT01418313
GCO 01-1032
R01HL071021 ( U.S. NIH Grant/Contract )
No
Not Provided
Not Provided
Icahn School of Medicine at Mount Sinai
Icahn School of Medicine at Mount Sinai
  • National Heart, Lung, and Blood Institute (NHLBI)
  • National Institutes of Health (NIH)
  • New York University School of Medicine
Principal Investigator: Zahi A Fayad, PhD Icahn School of Medicine at Mount Sinai
Icahn School of Medicine at Mount Sinai
January 2018