Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Role of Donor Genetics and Recipient Genetics in Kidney Transplant Outcomes

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT01143532
Recruitment Status : Completed
First Posted : June 14, 2010
Last Update Posted : November 3, 2021
Sponsor:
Information provided by (Responsible Party):
National Institutes of Health Clinical Center (CC) ( National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) )

Tracking Information
First Submitted Date June 11, 2010
First Posted Date June 14, 2010
Last Update Posted Date November 3, 2021
Actual Study Start Date August 12, 2010
Primary Completion Date Not Provided
Current Primary Outcome Measures
 (submitted: August 14, 2019)
Whether variation in other donor genes might contribute to donor and recipient outcomes [ Time Frame: 1995-2006 ]
Will identify 300 kidney transplant dyads (donor/recipient pairs), which both individuals were of African descent and the kidney transplants were performed between 1995-2006. We hypothesize that genetic variants in the kidney donor affect kidney donor outcomes. Kidney donors have an increased prevalence of microalbuminuria.
Original Primary Outcome Measures Not Provided
Change History
Current Secondary Outcome Measures
 (submitted: August 14, 2019)
Whether recipient genotype contributes to recipient outcomes. [ Time Frame: 1995-2006 ]
We hypothesize that genetic variants in the kidney donor genome and secondarily in recipient genome might contribute to kidney recipient outcomes.
Original Secondary Outcome Measures Not Provided
Current Other Pre-specified Outcome Measures Not Provided
Original Other Pre-specified Outcome Measures Not Provided
 
Descriptive Information
Brief Title Role of Donor Genetics and Recipient Genetics in Kidney Transplant Outcomes
Official Title Role of Donor Genetics and Recipient Genetics in Kidney Transplant Outcomes
Brief Summary

Background:

- Genetic variation in a particular chromosome is a major contributor to the increased risk for kidney disease that is common in people of African descent, although the specific gene, mutations, and other aspects of the variations remain to be determined. By studying the outcomes of kidney transplant in donors and recipients of African descent, researchers hope to better understand the effects of this genetic variation on the success of kidney transplants.

Objectives:

- To examine possible connections between genetic variations and kidney transplant outcomes for donors and recipients.

Eligibility:

  • <TAB>Participants in kidney transplant where both donor and recipient were of black African descent.
  • <TAB>Eligible transplants include both living donor and deceased donor.

Design:

  • The study will involve one visit of up to 8 hours.
  • All participants will provide a detailed personal and family medical history.
  • All participants will provide blood and urine samples, including a 24-hour urine collection, to test kidney function and collect material for genetic testing.
  • Donor participants will also have a magnetic resonance imaging (MRI) scan of their remaining kidney.
Detailed Description

Genetic variation in the region of MYH9 and APOL1, located on chromosome 22, is a major contributor to the increased risk for kidney disease that characterizes African descent populations, although the specific gene, causative mutations, and the molecular and cellular mechanisms remain to be determined. We propose to study the role of MYH9 and APOL1 genetic variation, as well as other genes, in renal transplant, including the effect of donor genotype on recipient outcomes and on donor outcomes. Additional exploratory studies will address 1) whether variation in other donor genes might contribute to donor and recipient outcomes, which we may address with candidate gene studies or a genome-wide association study and 2) whether recipient genotype contributes to recipient outcomes, which we will address in similar ways.

MULTICENTER STUDY. We will identify 300 kidney transplant dyads (donor/recipient pairs), in which both individuals were of African descent and the kidney transplants were performed between 1995 and 2006. We will include 150 living donor transplants (selected on the basis of the ability to locate the surviving living donor and their willingness to participate) and 150 deceased donor transplants (selected at random, to minimize survival bias of the allograft). All subjects sign consents that are identical or similar to the NIH consent.

RECIPIENT OUTCOMES. We hypothesize that genetic variants in the kidney donor genome and secondarily in recipient genome might contribute to kidney recipient outcomes. We will obtain kidney donor genotypes using blood from surviving living donors or using transplant kidney biopsy DNA from now-deceased living donors, and we will obtain deceased donor genotypes by using transplant kidney biopsies. We will obtain recipient DNA, when available, from surviving recipients or from tissues obtained from deceased recipients. We will carry out Cox proportional hazards analysis to test the primary hypothesis, that donor MYH9 and APOL1 genotype influences allograft survival. We will also develop a multivariable model to predict last follow-up glomerular filtration rate, incorporating factors known to influence transplant outcomes and examining the effect of donor MYH9 and APOL1 genotype. In exploratory studies, we determine whether recipient genetic variants influence recipient outcomes.

DONOR OUTCOMES. We hypothesize that genetic variants in the kidney donor affect kidney donor outcomes. While kidney donors do not have an increased risk of chronic kidney disease compared to the general population, they do have an increased prevalence of microalbuminuria. Furthermore, the extent of compensatory renal hypertrophy appears to differ among individuals. We wish to determine whether MYH9 and APOL1 genotype affects these outcomes, as well as the uncommon occurrence of overt kidney disease after kidney donation. CLINICAL IMPLICATIONS. We believe that that these studies will expand our knowledge of how donor genotypes influence kidney transplant outcomes for both donors and recipients.

COLLABORATIVE STUDY. In separate but related studies, we will work with various collaborators who pursuing similar question under research protocols that they have generated and for which they have local IRB approvals. We will receive from these collaborators materials for preparation of DNA, from which we will genotype APOL1 and other genes known or hypothesized to be related to donor and recipient transplant outcomes.

Study Type Observational
Study Design Observational Model: Cohort
Time Perspective: Other
Target Follow-Up Duration Not Provided
Biospecimen Not Provided
Sampling Method Probability Sample
Study Population We will study 300 African American kidney transplant dyads (donor/recipient pairs), which both individuals were of African descent and the kidney transplants were performed between 1995-2006. We hypothesize that genetic variants in the kidney donor affect kidney donor outcomes. Kidney donors have an increased prevalence of microalbuminuria.
Condition
  • Kidney Disease
  • Kidney Transplantation
  • Kidney Failure, Chronic
Intervention Not Provided
Study Groups/Cohorts
  • 1
    Kidney transplant recipient of black African descent.
  • 2
    Kidney transplant donor of black African descent.
Publications * Not Provided

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Recruitment Information
Recruitment Status Completed
Actual Enrollment
 (submitted: April 4, 2018)
26
Original Estimated Enrollment
 (submitted: June 11, 2010)
600
Study Completion Date Not Provided
Primary Completion Date Not Provided
Eligibility Criteria
  • INCLUSION CRITERIA:

We will study 300 African American kidney transplant dyads.

INCLUSION CRITERIA FOR DYADS:

  1. African descent donor and African descent recipient
  2. Kidney transplant performed Jan 1995 - Dec 2006.
  3. First kidney transplant
  4. Kidney only transplant (excluding transplant of any other organ at any other time).

EXCLUSION CRITERIA:

  1. We will exclude donors whose kidneys were used in transplants in which two organs were transplanted, e.g. pancreas and kidney, either simultaneously or at separate times. We will exclude donors whose kidneys were used in second or subsequent transplants. Rationale: dual organ transplants and serial transplants are more complicated clinical situations and renal allograft survival may be shorter and thus not comparable with other kidney transplants.
  2. We will exclude recipients who had HIV, hepatitis B or hepatitis C infection diagnosed either before or after the kidney transplant.
  3. Children
  4. Pregnant women will be excluded but invited to participate after delivery. The rationale is the renal function is altered during pregnancy
Sex/Gender
Sexes Eligible for Study: All
Ages 18 Years to 99 Years   (Adult, Older Adult)
Accepts Healthy Volunteers No
Contacts Contact information is only displayed when the study is recruiting subjects
Listed Location Countries United States
Removed Location Countries  
 
Administrative Information
NCT Number NCT01143532
Other Study ID Numbers 100135
10-DK-0135
Has Data Monitoring Committee Not Provided
U.S. FDA-regulated Product Not Provided
IPD Sharing Statement Not Provided
Responsible Party National Institutes of Health Clinical Center (CC) ( National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) )
Study Sponsor National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Collaborators Not Provided
Investigators
Principal Investigator: Jeffrey B Kopp, M.D. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
PRS Account National Institutes of Health Clinical Center (CC)
Verification Date July 1, 2021