We're building a better ClinicalTrials.gov. Check it out and tell us what you think!
Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Social Media-based Vaccine Confidence and Hesitancy Monitoring

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT05442762
Recruitment Status : Withdrawn (Adjustment of research plan)
First Posted : July 5, 2022
Last Update Posted : July 5, 2022
Sponsor:
Collaborator:
Merck Sharp & Dohme LLC
Information provided by (Responsible Party):
Zhiyuan Hou, Fudan University

Brief Summary:

History and scientific evidence show that it is critical to maintain public trust and confidence in vaccination. Any crisis in confidence has the potential to cause significant disruption and a detrimental impact on vaccination. Vaccine hesitancy is a complex and context-specific issue that varies across time, place, and vaccines. It has been cited by World Health Organization(WHO) as one of the top ten threats to global health in 2019. Coronavirus disease(COVID-19) pandemic may change public confidence in vaccines. Therefore, it is necessary to establish a surveillance system to monitor vaccine confidence and hesitancy in real time.

To date, a growing body of literature has used social media platforms such as Twitter and weico for public health research. Large amounts of real time data posted on social media platforms can be used to quickly identify the public's attitudes on vaccines, as a way to support health communication and health promotion, messaging. However, textual data on social media is difficult to be analyzed. Recent progress in machine learning makes it possible to automatically analyze textual data on social media in real time.

In this study, the investigators will establish a social media surveillance and analysis platform on vaccines, develop a series of machine learning models to monitor vaccine confidence and early detect emerging vaccine-related risks, and assess public communication around vaccines. The investigators will assess the temporal and spatial distribution of vaccine confidence and hesitancy globally using Twitter data and in China using weico data, for all vaccines and Human Papilloma Virus(HPV) vaccine, respectively. Our study will guide the design of effective health communication strategies to improve vaccine confidence.


Condition or disease
Social Medium Data Collection Patient Acceptance of Health Care Immunization Programs Vaccination Refusal Information Dissemination Machine Learning Internet-Based Intervention

Detailed Description:
  1. Collect and update social media data regarding vaccines The investigators will automatically collect all social media posts regarding vaccines in real time. Social media cohort database will be established and updated for all vaccines and Human Papilloma Virus(HPV) vaccine, respectively.
  2. Monitor vaccine confidence and hesitancy in real time: deep (supervised) machine learning models Deep learning model, a supervised machine learning technique, will be used to analyze text data on social media in real time according to the predefined vaccine confidence and hesitancy framework. The investigators will first manually annotate a subset of social media posts (20,000 posts) regarding vaccines. The initial manually-annotated posts are then used to train and evaluate deep learning models. Deep learning models with the best performance are selected and applied to classify all vaccine-related posts according to the vaccine confidence and hesitancy framework.
  3. Monitor emerging concerns and sentiment swings in real time to early warn vaccine-related risks or crises: topic (unsupervised) machine learning models and linguistic analysis There are some topics outside of the predefined vaccine confidence and hesitancy framework used in deep learning models, and new topics emerge in any time. Vaccine crisis would influence public sentiments. Monitoring emerging topics and sentiment swings will provide early warning of vaccine-related risks or crises. Use Topic Modeling, an unsupervised machine learning technique that can automatically classify text to representative topics in social media, to monitor emerging topics and concerns regarding vaccines.
  4. Assess public engagement on social media to inform effective health communication strategies: social media engagement analysis Besides posts data on social media, engagement data of posts are also available to be analyzed, including likes, comments, and shares of posts. The investigators will conduct social media engagement analysis to investigate public communication around vaccines online. This will guide the design of effective health communication strategies.
  5. Establish social media surveillance and analysis platform for vaccine confidence and crisis Through the steps above, the investigators will establish a social media surveillance and analysis platform for vaccine confidence and crisis. Time-series trends, geographic variation, and associated factors of the indicators produced above will be presented to monitor vaccine confidence in real time, early warn emerging risks or crises, and inform effective health communication strategies.
  6. Past research experience The investigators have conducted a series of relevant studies to analyze social media data using machine learning techniques during the COVID-19 epidemic, covering COVID-19 vaccine confidence and public response to COVID-19. These experiences make the current study feasible.

Layout table for study information
Study Type : Observational
Actual Enrollment : 0 participants
Observational Model: Other
Time Perspective: Cross-Sectional
Official Title: A Social Media-based Machine Learning Study to Monitor Vaccine Confidence and Hesitancy and Early Warn Emerging Vaccine-related Risks in Real Time
Actual Study Start Date : March 1, 2022
Actual Primary Completion Date : June 1, 2022
Actual Study Completion Date : June 24, 2022

Resource links provided by the National Library of Medicine

MedlinePlus related topics: Vaccines

Group/Cohort
Global Database of Vaccine Related Posts
Tweets in English from Twitter and posts from weico from 2015 to 2022 for all vaccines. The investigators only included posts from individual accounts and excluded those from news, organizational accounts, or verified users.
Global Database of HPV Vaccine Related Posts
Tweets in English from Twitter and posts from weico from 2015 to 2022 for HPV vaccine. The investigators only included posts from individual accounts and excluded those from news, organizational accounts, or verified users.



Primary Outcome Measures :
  1. Changes in the prevalence of vaccine confidence and hesitancy [ Time Frame: Change from baseline prevalence of vaccine confidence and vaccine hesitancy at 1 year. ]
    Vaccine confidence refers to the public's tweets expressing trust in the safety and effectiveness of vaccine, recognition of the vaccination necessity, and vaccine acceptance. Vaccine hesitancy means that the tweets express vaccine-related misinformation and rumors, worry about the safety and effectiveness of the vaccine, and vaccine rejection. The investigators will calculate the ratio of these two categories in all vaccine-related tweets as the prevalence of vaccine confidence and vaccine hesitancy.


Secondary Outcome Measures :
  1. Changes in the prevalence of machine-generated topics [ Time Frame: Change from baseline prevalence of machine-generated topics at 1 year. ]
    Machine-generated topics refer to vaccine-related topics automatically generated through machine learning methods, such as political conspiracy, vaccine exemption, vaccine adverse events, and others. The investigators will calculate the ratio of tweets involved in each machine-generated topic in all vaccine-related tweets as the prevalence of machine-generated topics.

  2. Changes in the public engagement on social media [ Time Frame: Change from baseline public engagement on social media at 1 year. ]
    Public engagement on social media is a comprehensive evaluation index to measure the transmit, reply, and like. The investigators will record the baseline and corresponding values after one year.



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   Child, Adult, Older Adult
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Sampling Method:   Non-Probability Sample
Study Population
Vaccine-related posts on social media are the object of our research to assess public's vaccine confidence and hesitancy. Each post record comprises account name, profiles, contents, post time, the number of followers, and engagement data.
Criteria

Inclusion Criteria:

  • Tweets and weico posts related to vaccines
  • Published in 2015-2022
  • English tweets
  • Tweets/posts from personal accounts.

Exclusion Criteria:

  • Tweets/posts from news, organization accounts, or authenticated users
  • Non English tweets.
Publications of Results:
Other Publications:
Devlin J, Chang M-W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint, 2018, arXiv:181004805.
Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res, 2003, 3:993-1022.
Pennebaker J, Boyd R, Jordan K, et al. The development and psychometric properties of LIWC2015. Austin, TX: University of Texas at Austin, 2015.
Stone JA, Can SH. Linguistic analysis of municipal twitter feeds: Factors influencing frequency and engagement. Gov Inf Q, 2020, 37(4): 101468.

Layout table for additonal information
Responsible Party: Zhiyuan Hou, Associate Professor, Fudan University
ClinicalTrials.gov Identifier: NCT05442762    
Other Study ID Numbers: ECT2112016948
First Posted: July 5, 2022    Key Record Dates
Last Update Posted: July 5, 2022
Last Verified: June 2022
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No
Plan Description: According to the terms of the agreement, individual data can not be shared.

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by Zhiyuan Hou, Fudan University:
vaccination hesitancy
vaccine confidence
social media
infodemiology
machine learning