We're building a better ClinicalTrials.gov. Check it out and tell us what you think!
Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

A Gene Transfer Study Inducing Fetal Hemoglobin in Sickle Cell Disease (GRASP, BMT CTN 2001) (GRASP)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT05353647
Recruitment Status : Recruiting
First Posted : April 29, 2022
Last Update Posted : January 12, 2023
Sponsor:
Collaborators:
National Heart, Lung, and Blood Institute (NHLBI)
California Institute for Regenerative Medicine (CIRM)
bluebird bio
Blood and Marrow Transplant Clinical Trials Network
Information provided by (Responsible Party):
David Williams, Boston Children's Hospital

Brief Summary:

A promising approach for the treatment of genetic diseases is called gene therapy. Gene therapy is a relatively new field of medicine in which genetic material (mostly DNA) in the patient is changed to treat his or her own disease. In gene therapy, we introduce new genetic material in order to fix or replace the patient's disease gene, with the goal of curing the disease. The procedure is similar to a bone marrow transplant, in that the patient's malfunctioning blood stem cells are reduced or eliminated using chemotherapy, but it is different because instead of using a different person's (donor) blood stem cells for the transplant, the patient's own blood stem cells are given back after the new genetic material has been introduced into those cells. This approach has the advantage of eliminating any risk of graft versus host disease (GVHD), reducing the risk of graft rejection, and may also allow less chemotherapy to be utilized for the conditioning portion of the transplant procedure. To introduce new genetic material into the patient's own blood stem cells we use a modified version of a virus (called a 'vector') that efficiently inserts the "correcting" genetic material into the cells. The vector is a specialized biological medicine that has been formulated for use in human beings.

Fetal hemoglobin (HbF) is a healthy, non-sickling kind of hemoglobin. The investigators have discovered a gene that is very important in controlling the amount of HbF. Decreasing the expression of this gene in sickle cell patients could increase the amount of fetal hemoglobin while simultaneously reducing the amount of sickle hemoglobin in their blood, specifically the amount in red blood cells where sickle hemoglobin causes damage to the cell, and therefore potentially cure or significantly improve the condition. The gene we are targeting for change in this study that controls the level of fetal hemoglobin is called BCL11A.

In summary, the advantages of a gene therapy approach include: 1) it can be used even if the patient does not have a matched donor available; 2) it may allow a reduction in the amount of chemotherapy required to prepare the patient for the transplant; and 3) it will avoid certain strong medicines often required to prevent and treat GVHD and rejection. Our lab studies with normal mice, mice that have a form of SCD, and with cells from the bone marrow of SCD patients who have donated bone marrow for research purposes show this approach is very effective in reducing the amount of sickle hemoglobin in red cells. Our pilot trial testing this approach in 10 patients with SCD has shown that the treatment has not caused any unexpected safety problems, and that it increases HbF within the red blood cells. Our goal is to continue to test whether this approach is safe, and whether using gene therapy to change the expression of BCL11A will lead to decreased episodes of vaso-occlusive crisis pain in people with SCD.


Condition or disease Intervention/treatment Phase
Sickle Cell Disease Biological: Autologous CD34+ HSC cells transduced with the lentiviral vector containing a shRNA targeting BCL11a Phase 2

Detailed Description:

This is an open-label, non-randomized, multi-center, phase 2 study involving a single infusion of autologous bone marrow derived CD34+ HSC cells transduced with the lentiviral vector containing a short-hairpin RNA targeting BCL11a. 25 patients ages 13 to 40 will be enrolled at sites across the US.

The main goal of this study is to determine whether the treatment will lead to a complete absence of severe vaso-occlusive events (VOEs) in patients with severe SCD.

After meeting eligibility criteria for the study, patients will receive blood transfusions for a period of at least 3 months prior to hematopoietic stem cell collection, with a goal of achieving a HbS level ≤ 30% by the time of mobilization. Patients will then undergo peripheral stem cell mobilization and have their cells collected by apheresis. The collected cells of each subject will be split into 2 portions; one portion for transduction with the lentiviral vector, and one portion set aside as a back-up product in the event a rescue treatment is needed. Patients may undergo multiple rounds of collection if sufficient numbers of cells are not obtained with the first collection. Transduction will be carried out on the selected CD34+ cells and transduced cells will be cryopreserved.

Patients will undergo standard work-up for autologous bone marrow transplantation prior to proceeding with conditioning and infusion of gene-modified cells. Patients will receive myeloablative conditioning with busulfan administered on days -5 to -2, prior to infusion of transduced cells. The transduced cells will be infused intravenously over 30-45 minutes after standard pre-hydration and premedication according to institutional guidelines.

Patients will be followed for 24 months post-infusion of gene modified cells.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 25 participants
Allocation: N/A
Intervention Model: Single Group Assignment
Intervention Model Description: Open-label, non-randomized, multi-center, phase 2, single arm study
Masking: None (Open Label)
Primary Purpose: Treatment
Official Title: A Multi-Center, Phase 2 Gene Transfer Study Inducing Fetal Hemoglobin in Sickle Cell (GRASP, BMT CTN 2001)
Actual Study Start Date : July 12, 2022
Estimated Primary Completion Date : May 2026
Estimated Study Completion Date : May 2026

Resource links provided by the National Library of Medicine


Arm Intervention/treatment
Experimental: Treatment Arm
Open-label, non-randomized, single arm study of a single infusion of autologous CD34+ HSC cells transduced with the lentiviral vector containing a shRNA targeting BCL11a.
Biological: Autologous CD34+ HSC cells transduced with the lentiviral vector containing a shRNA targeting BCL11a
A single infusion of autologous CD34+ HSC cells transduced with the lentiviral vector containing a shRNA targeting BCL11a




Primary Outcome Measures :
  1. Occurrence of VOEs by Month 24 post-infusion [ Time Frame: Month 6 to Month 24 post-infusion of gene modified cells ]
    Each patient will be classified as either a success or a failure (binary endpoint). Success is defined as a complete absence of severe VOEs (defining VOE as a painful event or ACS with no medically determined cause other than a vaso-occlusion, requiring a ≥24-hour hospital or emergency room (ER) observation unit visit or at least 2 visits to a day unit or ER over 72 hours with both visits requiring parenteral opioids) in the period from Month 6 to Month 24 after gene therapy. Patients with one or more severe VOEs from Month 6 to Month 24 after gene therapy, or who experience engraftment failure, or who initiate disease modifying agent(s) for prevention or management of severe VOEs, or who have less than 24 months of follow-up post-infusion, will be classified as 'failures'. For the purpose of this primary endpoint analysis, the first 6 months after infusion of the gene therapy product will be excluded from the VOE observation period.


Secondary Outcome Measures :
  1. Hemoglobin Function [ Time Frame: Baseline through Month 24 post-infusion of gene modified cells ]
    Each patient will be classified in terms of hemoglobin function, either sufficient or insufficient (binary endpoint). Sufficient Hb function is defined as either (total Hb of at least 10 g/dL or increase of > 2 g/dL over baseline) and (total HbF > 20% with > 60% F cells). Each of these factors will be measured at Month 9, 12, 15, 18 and 24 post-infusion of gene modified cells. For each factor, the average value across the available time points (minimum of two required) will be utilized to determine if the function criteria have been met, to calculate the binary endpoint

  2. Hemolysis [ Time Frame: up to 18 months post-infusion of gene modified cells ]
    Values of absolute reticulocyte count [units]

  3. Hemolysis [ Time Frame: up to 18 months post-infusion of gene modified cells ]
    Values of lactate dehydrogenase [units]

  4. Hemolysis [ Time Frame: up to 18 months post-infusion of gene modified cells ]
    Values of bilirubin [units]

  5. Toxicities and Adverse Events [ Time Frame: Study enrollment through Month 24 post-infusion of gene modified cells ]
    Adverse events (AEs) grade ≥2 according to CTCAE Version 5 that are related or possibly related to the study procedure, from study enrollment through 24 months.

  6. Percentage change in the annualized number of VOEs [ Time Frame: 24 months prior to consent and 6 months to 24 months post-infusion of gene modified cells ]

    For each evaluable patient (pt), % change in annualized # of severe VOEs will be calculated as:

    (B - A) / A * 100%. A=annualized number of severe VOEs over the 24-month period prior to consent; B=annualized number of severe VOEs from Months 6-24 after gene therapy. For A, annualized # of severe VOEs = [(# of severe VOEs) / 2 years]. For B, annualized number of severe VOEs = [(# of severe VOEs) / (# of years of observation from Month 6-24 post-infusion)].

    For evaluable pts who are lost to follow-up/die/withdraw between Month 6-24, B will be imputed based on the severe VOE rate observed during the time period from Month 6 until the time the pt is lost/dies/withdraws. The minimum length of the VOE observation period required for imputing the annualized VOE rate will be from Month 6 to Month 18 post-infusion. Example: 2 VOEs Month 6-18 (0.167/month) then lost to follow-up; the imputed # of VOEs Month 6-24 equals 3, and annualized B=2.


  7. Occurrence of VOEs by Month 18 post-infusion [ Time Frame: Month 6 to Month 18 post-infusion of gene modified cells ]
    Each patient will be classified as either a complete reduction or not a complete reduction in the number of severe VOEs (binary endpoint). A complete reduction is defined as having no severe VOEs (defining VOE as ACS or VOC requiring parenteral opioids) in a VOE observation period from Month 6 to Month 18 after gene therapy, as compared to the 24 months prior to consent. For the purpose of analysis, the initial 6 months after infusion will be excluded from the VOE observation period.



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   13 Years to 40 Years   (Child, Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Criteria

Inclusion Criteria:

  1. A diagnosis of sickle cell disease with genotype HbSS or HbS/β0 thalassemia.
  2. Between the age of 13-40 years.
  3. Clinically severe disease, defined as at least 4 vaso-occlusive events (VOEs) within the past 24 months prior to consent.
  4. Adequate hematologic parameters (regardless of therapy) including white blood cell (WBC) count within the range of 2.5 - 25.0 x 10^9 /L, hemoglobin within the range of 5 - 11 g/dL, and platelet count above 150 x 10^9 /L
  5. Adequate organ function and performance status:

    1. Karnofsky/Lansky performance status ≥80%.
    2. Serum creatinine </= 1.5 times the upper limit of normal for age, and calculated creatinine clearance or GFR >/= 60 mL/min/1.73 m2.
    3. Persistent aspartate transaminase, alanine transaminase, or direct bilirubin value <3× the upper limit of normal (ULN).
    4. DLCO, FEV1, and FVC >50% of predicted
    5. Left ventricular ejection fraction >40% or shortening fraction >25%
  6. No HLA-genotypically identical related bone marrow donor available.
  7. Parental/guardian/patient signed informed consent.

Exclusion Criteria: Subjects who have:

  1. Concomitant condition or illness including: ongoing or active infection, active malignancy, major surgery in the past 30 days, medical/psychiatric illness/social situations that would limit compliance with study requirements as determined by the treating physician.
  2. Receiving a chronic transfusion regimen for primary or secondary stroke prophylaxis. (Note: patients with a history of abnormal TCD who have transitioned from transfusions to hydroxyurea for stroke prophylaxis are also not eligible for the study.)
  3. Patients with history of abnormal TCD (measured with a timed average maximum mean velocity of ≥200 cm/second in the terminal portion of the internal carotid or proximal portion of middle cerebral artery or if the imaging TCD method is used, >185 cm/second plus evidence of intracranial vasculopathy) who were ever on transfusions and subsequently transitioned to hydroxyurea.
  4. History of overt stroke or any neurologic event lasting >24 hours. (Note: patients with imaging evidence of silent stroke but not on a chronic transfusion regimen are not excluded.)
  5. Isolated recurrent priapism unresponsive to medical and surgical therapies in the absence of other qualifying VOE complications that meet inclusion criteria.
  6. Contraindication to administration of conditioning medication (busulfan)
  7. Prior allogeneic hematopoietic stem cell transplant
  8. Known myelodysplasia of the bone marrow or abnormal bone marrow cytogenetics
  9. Severe cerebral vasculopathy
  10. Liver MRI (≤ 180 days prior to initiation of BU conditioning) to document hepatic iron content is required for participants who have received ≥20 packed red blood cell transfusions (cumulative); participants who have hepatic iron content ≥ 9 mg Fe/g liver dry weight by liver MRI must have a liver biopsy and histological examination/documentation of the absence of cirrhosis, bridging fibrosis, and active hepatitis (≤ 180 days prior to initiation of transplant conditioning); the absence of bridging fibrosis will be determined using the histological grading and staging scale as described by Ishak and colleagues (1995) as described in the Manual of Operations (MOO);
  11. Evidence of HIV infection, HTLV infection, active hepatitis B infection or active hepatitis C infection.
  12. Known acute hepatitis or evidence of moderate or severe portal fibrosis or cirrhosis on prior biopsy
  13. Receipt of an investigational study drug or procedure within 90 days of study enrollment
  14. Either or both of the following findings on screening bone marrow aspirate/biopsy: a) diagnosis of myelodysplastic syndrome (MDS) based on morphology and/or cytogenetics (based on WHO definitions) OR b) pathogenic mutation in any gene on the Rapid Heme Panel (RHP), a next-generation sequencing clinical assay for gene mutations associated with hematologic malignancies performed at Brigham and Women's Hospital.
  15. Pregnancy or breastfeeding
  16. Presence of a genetically-determined hypercoagulable state or personal history of prior VTE (deep vein thrombosis or pulmonary embolism) that would represent a contraindication to proceed with central line placement and study events.

The Phase 2 trial is not enrolling patients who reside outside the US at this time.


Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT05353647


Contacts
Layout table for location contacts
Contact: Leah Cheng 857-218-4731 leah.cheng@childrens.harvard.edu
Contact: Catherine Dempsey 617-919-4227 catherine.dempsey@childrens.harvard.edu

Locations
Layout table for location information
United States, California
Children's Hospital of Los Angeles Not yet recruiting
Los Angeles, California, United States, 90027
Contact: Neena Kapoor, MD       nkapoor@chla.usc.edu   
Principal Investigator: Neena Kapoor, MD         
UCLA Medical Center Recruiting
Los Angeles, California, United States, 90095
Contact: Gary Schiller, MD       gschiller@ucla.edu   
Principal Investigator: Gary Schiller, MD         
UCSF Benioff Children's Hospital Oakland Recruiting
Oakland, California, United States, 94609
Contact: Mark Walters, MD       mark.walters@ucsf.edu   
Principal Investigator: Mark Walters, MD         
UC Davis Medical Center Recruiting
Sacramento, California, United States, 95817
Contact: Mehrdad Abedi, MD       mabedi@ucdavis.edu   
Principal Investigator: Mehrdad Abedi, MD         
United States, Georgia
Children's Healthcare of Atlanta/Emory University Not yet recruiting
Atlanta, Georgia, United States, 30322
Contact: Edmund Waller, MD       ewaller@emory.edu   
Principal Investigator: Edmund Waller, MD         
United States, Illinois
Lurie Children's Hospital of Chicago Not yet recruiting
Chicago, Illinois, United States, 60611
Contact: Sonali Chaudhury, MD       schaudhury@luriechildrens.org   
Principal Investigator: Sonali Chaudhury, MD         
United States, Massachusetts
Boston Children's Hospital Recruiting
Boston, Massachusetts, United States, 02115
Contact: Amy Federico    857-215-0232    amy.federico@childrens.harvard.edu   
Contact: Emily Morris    617-632-1954    emily.morris@childrens.harvard.edu   
Principal Investigator: Erica Esrick, MD         
Dana-Farber Cancer Institute/Brigham and Women's Hospital Recruiting
Boston, Massachusetts, United States, 02115
Contact: Joseph Antin, MD       joseph_antin@dfci.harvard.edu   
Principal Investigator: Joseph Antin, MD         
United States, Wisconsin
Medical College of Wisconsin Recruiting
Milwaukee, Wisconsin, United States, 53226
Contact: Mary Eapen, MD, MS    414-805-0700    meapen@mcw.edu   
Principal Investigator: Mary Eapen, MD, MS         
Sponsors and Collaborators
David Williams
National Heart, Lung, and Blood Institute (NHLBI)
California Institute for Regenerative Medicine (CIRM)
bluebird bio
Blood and Marrow Transplant Clinical Trials Network
Investigators
Layout table for investigator information
Principal Investigator: David Williams Boston Children's Hospital
Layout table for additonal information
Responsible Party: David Williams, Chief - Division of Hematology/Oncology, Boston Children's Hospital
ClinicalTrials.gov Identifier: NCT05353647    
Other Study ID Numbers: P00038082
1OT2HL154815 ( U.S. NIH Grant/Contract )
CLIN2-12031 ( Other Grant/Funding Number: California Institute for Regenerative Medicine )
First Posted: April 29, 2022    Key Record Dates
Last Update Posted: January 12, 2023
Last Verified: January 2023
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: Yes
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by David Williams, Boston Children's Hospital:
gene therapy
lentivirus vector
BCL11A
fetal hemoglobin
Additional relevant MeSH terms:
Layout table for MeSH terms
Anemia, Sickle Cell
Anemia, Hemolytic, Congenital
Anemia, Hemolytic
Anemia
Hematologic Diseases
Hemoglobinopathies
Genetic Diseases, Inborn