Try the modernized beta website. Learn more about the modernization effort.
Working… Menu

Predictive Models on Pain and Severity in FM Patients

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details. Identifier: NCT04918602
Recruitment Status : Not yet recruiting
First Posted : June 9, 2021
Last Update Posted : June 9, 2021
Information provided by (Responsible Party):
University of Castilla-La Mancha

Brief Summary:

The primary goal of this research project is to develop different prediction models in fibromyalgia disease through the application of machine learning techniques and to assess the explainability of the results.

As specific objectives the research project intends: to predicting Fibromyalgia severity of patients based on clinical variables; to assess the relevance of social-psycho-demographic variables on the fibromyalgia severity of the patients; to predict the pain suffered by the patients as well as the impact of the fibromyalgia on patient's life; to categorize fibromyalgia group of patients depending on their levels of Fibromyalgia severity.

Condition or disease

Detailed Description:

Fibromyalgia (FM) is a condition characterized by chronic musculoskeletal pain whose pathophysiology is still unclear. Furthermore, this pathology is frequently associated with sleep disturbances, pronounced fatigue, morning stiffness, poor quality of life, cognitive disturbances (mainly memory problems) and psychological problems (depression, anxiety and stress).

FM is associated with greater negative affect, which implies a general state of anguish composed of aversive emotions such as sadness, fear, anger and guilt. Patients with FM commonly suffer from high rates of anxiety, depression, pain catastrophizing, and stress levels, which are associated with a worsening of symptoms, including own cognitive.

Machine learning (ML) and data mining had been successfully applied, over the past few decades, to build computer-aided diagnosis (CAD) systems for diagnosing complex health issues with good accuracy and efficiency by recognizing potentially useful, original, and comprehensible patterns in health data. Thus, machine learning provides useful tools for multivariate data analysis allowing predictions based on the established models and hence offering a suitable advantage for risk assessment of many diseases including heart failure. Machine learning offers advantages not only for clinical prediction but also for feature ranking improving the interpretation of the outputs by clinical professionals.

Explainable ML models, also known as interpretable ML models, allow healthcare experts to make reasonable and data-driven decisions to provide personalized treatment that can ultimately lead to high quality of service in healthcare. These models fall into eXplainable Artificial Intelligence (XAI) field, defined as suite of ML techniques that 1) produce more explainable models while maintaining a high level of learning performance, and 2) enable humans to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners.

Layout table for study information
Study Type : Observational
Estimated Enrollment : 150 participants
Observational Model: Other
Time Perspective: Prospective
Official Title: Development of Predictive Models Based on Artificial Intelligence for the Analysis of the Psychosocial Profile of the Patient With Fibromyalgia on Pain and Severity of the Disease.
Estimated Study Start Date : June 2021
Estimated Primary Completion Date : November 2021
Estimated Study Completion Date : November 2021

Resource links provided by the National Library of Medicine

MedlinePlus related topics: Fibromyalgia

Primary Outcome Measures :
  1. Pain intensity [ Time Frame: Baseline. ]
    It will be measured with a visual analog scale (VAS) of 100 millimeters in length. The subject has to indicate the level ofpain he feels, being 0 the absence of pain and 100 the maximum imaginable.

  2. Disease severity. [ Time Frame: Baseline. ]

    It will be measured using the Polysymptomatic Distress Scale (PDS) (or Fibromyalgia Severity Scale), composed of the sum of the following two scales:

    1. Widespread Pain Index (WPI): Questionnaire in which a total of 19 body areas are represented. The subject has to mark the regions where the pain appears. It represents a measure of the extent of pain, with a maximum score of 19 points.
    2. Symptom Severity Scale (SSS): Questionnaire that measures the severity of the symptoms associated with fibromyalgia, such as fatigue, non-restorative sleep, cognitive problems, headaches, abdominal pain or cramps and depression. It represents a measure of somatic and non-somatic symptoms of fibromyalgia, with a maximum score of 12 points.

  3. Referred pain area after suprathreshold pressure stimulation. [ Time Frame: Baseline. ]

    A pressure algometer (Force Ten™, Wagner Instruments, USA) will be used. It will be performed on the infraspinatus muscle (point equidistant between the midpoint of the spine of the scapula, the inferior angle of the scapula and the midpoint of the medial border of the scapula) at a constant suprathreshold pressure (20% above the pressure pain threshold) for 60 seconds.

    After the stimulation, the subject should draw the induced pain area on a digital bodychart using the Navigate Pain application (Navigate Pain, Aalborg University, Denmark).

Secondary Outcome Measures :
  1. Fibromyalgia Impact Quality-of-Life. [ Time Frame: Baseline. ]
    It will be measured with the version adapted to the Spanish of the Fibromyalgia Impact Questionnaire (FIQ).

  2. Anxiety. [ Time Frame: Baseline. ]
    The version adapted to Spanish from the State Scale (STAI-ES) of the State-Trait Anxiety Inventory (STAI) will be used.

  3. Pain catastrophizing. [ Time Frame: Baseline. ]
    The Spanish version of the Pain Catastrophizing Scale (PCS) will be used.

  4. Depression. [ Time Frame: Baseline. ]
    The adaptation to the Spanish of Beck Depression Inventory II will be used.

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Sampling Method:   Non-Probability Sample
Study Population
Members enrolled in a local fibromyalgia association.

Inclusion Criteria:

  • Age between 18 and 65 years.
  • Fullfilled the 2010 American Collegue of Rheumathology criteria for fibromyalgia.
  • Understanding of spoken and written Spanish.

Exclusion Criteria:

  • Diagnosed psychiatric pathology.
  • Rheumatic pathology not medically controlled.
  • Neurological pathologies that make evaluations difficult.

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT04918602

Layout table for location contacts
Contact: Rubén Arroyo Fernández, MSc 925803600 ext 86589

Layout table for location information
Hospital General Nuestra Señora del Prado
Talavera De La Reina, Toledo, Spain, 45600
Contact: Rubén Arroyo Fernández, MSc    925803600 ext 86589   
Sponsors and Collaborators
University of Castilla-La Mancha
Layout table for additonal information
Responsible Party: University of Castilla-La Mancha Identifier: NCT04918602    
Other Study ID Numbers: IA Fibromyalgia
First Posted: June 9, 2021    Key Record Dates
Last Update Posted: June 9, 2021
Last Verified: June 2021

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Additional relevant MeSH terms:
Layout table for MeSH terms
Myofascial Pain Syndromes
Muscular Diseases
Musculoskeletal Diseases
Rheumatic Diseases
Neuromuscular Diseases
Nervous System Diseases