We're building a better ClinicalTrials.gov. Check it out and tell us what you think!
Try the New Site
We're building a modernized ClinicalTrials.gov! Visit Beta.ClinicalTrials.gov to try the new functionality.
ClinicalTrials.gov Menu

Transcutaneous Spinal Stimulation: Safety and Feasibility for Trunk Control in Children With Spinal Cord Injury

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT03975634
Recruitment Status : Active, not recruiting
First Posted : June 5, 2019
Last Update Posted : August 1, 2022
National Center of Neuromodulation for Rehabilitation
Information provided by (Responsible Party):
Andrea L. Behrman, PhD, PT, University of Louisville

Brief Summary:

Paralysis of trunk muscles and the inability to sit upright is one of the major problems facing adults and children with spinal cord injury (SCI). Activity-based locomotor training has resulted in improved trunk control in children with spinal cord injury, though full recovery is not achieved in all children. Transcutaneous spinal stimulation' (TcStim), a stimulation applied over the skin to the sensory nerves and spinal cord, is a promising tool that may further enhance improvements to trunk control. The purpose of this study is to determine the feasibility (can we do it) and safety of Transcutaneous Stimulation (TcStim) in children with SCI to acutely improve sitting upright and when used with activity-based locomotor training (AB-LT). Thus, can we provide this therapy to children and do so safely examining a child's immediate response and cumulative response relative to safety and comfort.

Eight participants in this study will sit as best they can with and without the stimulation (i.e. stimulation applied across the skin to the nerves entering the spinal cord and to the spinal cord) and their immediate response (safety, comfort, trunk position) recorded. Then, two participants will receive approximately 40 sessions of activity-based locomotor training in combination with the stimulation. Their cumulative response of stimulation (i.e. safety, comfort, feasibility) across time will be documented. Participation in this study may last up to 3 days for the 8 participants being observed for acute response to stimulation and up to 9 weeks for the participants being observed for cumulative response to training with stimulation. We will monitor the participants throughout the testing and training for their response to the stimulation (i.e. safety) and their comfort.

Condition or disease Intervention/treatment Phase
Spinal Cord Injuries Device: Transcutaneous Spinal Stimulation Not Applicable

Detailed Description:

Similar to adults, children with severe spinal cord injury (SCI) suffer the devastating consequences of limb and trunk muscle paralysis rendering them unable to sit upright, stand, or walk. Unique to pediatric-onset SCI, nearly 100% of children injured under the age of 10 develop neuromuscular scoliosis with approximately 65% requiring surgical intervention. Given the importance of muscle activity and load-bearing for musculoskeletal development, SCI-induced trunk muscle paralysis during rapid growth contributes significantly to the onset and progression of scoliosis. Current physical rehabilitation interventions after pediatric-onset SCI are based on the premise of permanence of SCI-induced paralysis and the inability to restore intrinsic trunk control. As a result, thoraco-lumbosacral braces remain the standard of care for upright sitting support without clear efficacy for reducing the incidence of neuromuscular scoliosis.

Advances in rehabilitation after SCI, for adult and pediatric populations, capitalize on the intrinsic capacity of spinal neuronal networks for generation of motor output below the lesion in response to sensory input during activity-based locomotor training (AB-LT). Our recent work demonstrated remarkable improvements in trunk control as measured by the Segmental Assessment of Trunk Control (SATCo) in all 21 participants with SCI, age range: 17 months-12 years at enrollment and mean time since injury 1.5 years (range 1 month-6 years), receiving AB-LT across 60 sessions. Sensory-afferent driven activation of the intrinsic synergies between the lower limb and trunk extensor muscles above, across and below the lesion likely underlies the physiological adaptations responsible for these gains. While all children improved, not all attained full trunk control. Incorporation of neuromodulatory techniques, such as epidural spinal cord stimulation, further challenges the limits for SCI recovery previously thought possible. There are recent reports of individuals with chronic complete SCI regaining the capacity to stand and walk with stimulation. Transcutaneous spinal stimulation (TcStim) provides a non-invasive neuromodulatory tool that may, similar to epidural stimulation, increase the central state of excitability below the lesion, thereby enabling greater capacity for integration of sensory input and augment motor output to potentiate trunk motor recovery. Children with SCI may not only benefit from novel neurotherapeutic interventions, but also may demonstrate even greater improvements due to inherent plasticity present during development. Previous studies demonstrated the efficacy of TcStim to acutely improve sitting posture and trunk muscle activation in adults with SCI. In children with cerebral palsy, TcStim combined with AB-LT significantly improved locomotion compared to AB-LT alone. Our overall objective is to demonstrate 'proof-of-principle', as a necessary first step, that TcStim is a feasible and safe approach to a therapeutic intervention targeting trunk control in children with SCI. If found to be feasible and safe, then future studies will employ TcStim in combination with restorative rehabilitation for children with SCI to examine the effect on trunk control.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Actual Enrollment : 9 participants
Allocation: N/A
Intervention Model: Single Group Assignment
Masking: None (Open Label)
Primary Purpose: Device Feasibility
Official Title: Transcutaneous Spinal Stimulation: Augmenting Training for Attaining Intrinsic Trunk Control in Children With Spinal Cord Injury
Actual Study Start Date : August 12, 2019
Actual Primary Completion Date : June 30, 2022
Estimated Study Completion Date : April 30, 2023

Resource links provided by the National Library of Medicine

Arm Intervention/treatment
Experimental: Transcutaneous spinal stimulation
Safety and feasibility outcome measures are collected during application of transcutaneous spinal stimulation while trunk control is assessed at 3 time points (acute) and/or while transcutaneous stimulation is applied in combination with activity-based locomotor training (40 sessions, 1.5 hours/day, 5 days/week; stimulation will be applied intermittently for no more than 10 minutes at a time during training)
Device: Transcutaneous Spinal Stimulation
Safety and feasibility will be monitored during transcutaneous spinal stimulation in children with spinal cord injury

Primary Outcome Measures :
  1. Incidence of skin irritation [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]
    Skin color, particularly change in skin color to pink indicating irritation in the location of the stimulating electrode placement will be assessed prior to stimulation experiments and immediately after; incidence of pink- or redness or irritation and time (minutes-days) to dissipation will be recorded.

  2. Faces Pain Scale-Revised (scale 0-10) [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]
    Faces Pain Scale - Revised is a self-report measure of pain intensity developed for children (C.L. Hicks et al. Pain 93 (2001). It will be used to score the sensation of pain on 0 (min - no pain)-to-10 (max - worst pain ever) metric. The scale depicts 6 facial expressions: first - face with a neutral expression corresponds to pain score of 0, next facial expression is scored as 2, etc. The faces scale will be presented to the participant (ages 3-8) prior to the experiment for baseline measurement, during stimulation and following the experiment.

  3. Visual Analog Scale (0-10) [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]
    To assess pain in the participants ages 8 and above, Visual Analog Scale (self-reported measure) will be presented with 0 corresponding to no pain and 10 corresponding to the "worst pain ever"; the scale will be presented at baseline measurement, during stimulation and following the experiment.

  4. Blood pressure [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]

    continuous beat-by-beat blood pressure (mmHg) recordings will be made using Finapress finger cuff system for 5 minutes prior to and 5 minutes immediately following stimulation while the child is sitting; Brachial arm blood pressure will be periodically measured during stimulation (mmHg).

    systolic and diastolic blood pressure values will be compared with the established norms for typically developing children (age and height matched);

  5. number of requests to stop the stimulation [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]
    Number of participants requesting (or number of request per participant within experimental sessions) to stop stimulation due to pain, fatigue or any other reason (documented)

  6. Angular excursions of trunk during trunk control assessments [ Time Frame: 3 days for Aim 1, 9 weeks for Aim 2 ]
    trunk kinematics (degrees of flexion/extension) in cervical, thoracic and lumbar regions;

Secondary Outcome Measures :
  1. Heart rate [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]

    heart rate (beats per minute) will be continuously monitored and recorded using 3-lead ECG electrocardiogram.

    The slope and correlation coefficient between beat-by-beat blood pressure and R-R intervals (ms) (measured from ECG) for 5 minutes prior to and 5 minutes immediately following stimulation will be used to assess spontaneous baroreflex sensitivity, indication of autonomic regulation of the cardiovascular function

  2. Compliance rate [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]
    Compliance - number of sessions missed and reason, willingness to continue participation.

  3. Center of pressure displacement during trunk control assessment [ Time Frame: 1 week for Aim 1, 9 weeks for Aim 2 ]
    the distance (mm) of the center of pressure displacement will be measured in mediolateral; anterior -posterior directions during reaching tasks while the participant is sitting on the force plate

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   2 Years to 15 Years   (Child)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No

Inclusion Criteria:

  • history of chronic, acquired upper motor neuron SCI (traumatic or non-traumatic);
  • discharged from in-patient rehabilitation
  • moderate to severe trunk control deficit as either documented with the Segmental Assessment of Trunk Control (SATCo, score < 15/20) or reported/observed inability to sit fully upright and without use of arm support
  • history of completion of a minimum of 60 sessions of activity-based locomotor training/therapy at Frazier Rehab

Exclusion Criteria:

  • botox use within past 3 months;
  • current baclofen use
  • unhealed fracture
  • any other medical complication limiting participation in the assessments and/or activity-based locomotor training;
  • prior surgery for scoliosis;
  • congenital SCI
  • total ventilator dependence

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03975634

Layout table for location information
United States, Kentucky
Kentucky Spinal Cord Injury Res Center, University of Louisville
Louisville, Kentucky, United States, 40202
Sponsors and Collaborators
University of Louisville
National Center of Neuromodulation for Rehabilitation
Layout table for investigator information
Principal Investigator: Andrea L Behrman, PhD, PT University of Louisville
Publications automatically indexed to this study by ClinicalTrials.gov Identifier (NCT Number):
Layout table for additonal information
Responsible Party: Andrea L. Behrman, PhD, PT, Professor, University of Louisville
ClinicalTrials.gov Identifier: NCT03975634    
Other Study ID Numbers: 19.0377
First Posted: June 5, 2019    Key Record Dates
Last Update Posted: August 1, 2022
Last Verified: July 2022
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: Yes
Device Product Not Approved or Cleared by U.S. FDA: Yes
Product Manufactured in and Exported from the U.S.: No
Keywords provided by Andrea L. Behrman, PhD, PT, University of Louisville:
transcutaneous spinal stimulation
trunk control
Additional relevant MeSH terms:
Layout table for MeSH terms
Spinal Cord Injuries
Wounds and Injuries
Spinal Cord Diseases
Central Nervous System Diseases
Nervous System Diseases
Trauma, Nervous System