Working...
ClinicalTrials.gov
ClinicalTrials.gov Menu

Ultrahigh-resolution Optical Coherence Tomography Imaging of the Anterior Eye Segment Structures

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT03461978
Recruitment Status : Enrolling by invitation
First Posted : March 12, 2018
Last Update Posted : October 25, 2018
Sponsor:
Information provided by (Responsible Party):
Gerhard Garhofer, Medical University of Vienna

Brief Summary:

The development of optical coherence tomography (OCT) and its application for in vivo imaging has opened entirely new opportunities in ophthalmology. The technology allows for both noninvasive visualization of the morphology and measurement of functional parameters within ocular tissues to a depth of a few millimetres even in nontransparent media. Until now the resolution of commercially available OCT systems is, however, much lower than that provided by light microscopy.

Recently, an ultrahigh-resolution OCT system was developed by our group providing resolutions of 1.7 and 17 µm in axial and lateral direction, respectively. This axial resolution is about four times better than that provided by standard OCT systems. It allows to perform in vivo imaging with a resolution close to biopsy of tissue and to visualize structures of the anterior eye segment with a remarkable richness of detail. The prototype was applied for in vivo imaging of the cornea including the precorneal tear film.

The goal of the planned pilot study is to apply this innovative imaging modality for visualization of the ultrastructure of the different parts of the anterior eye segment structures in diseased subjects, as well as in patients who underwent minimally invasive glaucoma surgery (MIGS). The obtained in vivo cross sectional images and three-dimensional data sets are hoped for contributing to the knowledge about the anatomy and physiology of the corresponding tissues. This could allow for a better interpretation of clinical features and findings obtained in slit lamp examination.


Condition or disease Intervention/treatment Phase
Meibomian Gland Dysfunction Cataract Glaucoma Corneal Transplantation Demodicosis Conjunctival Pathologies Acanthamoeba Keratitis Aniridia Device: Ultrahigh resolution Spectral Domain OCT Not Applicable

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 60 participants
Allocation: Non-Randomized
Intervention Model: Parallel Assignment
Masking: None (Open Label)
Primary Purpose: Diagnostic
Official Title: Ultrahigh-resolution Optical Coherence Tomography Imaging of the Anterior Eye Segment Structures - a Pilot Study
Actual Study Start Date : July 12, 2017
Estimated Primary Completion Date : March 2019
Estimated Study Completion Date : March 2019


Arm Intervention/treatment
10 patients with meibomian gland dysfunction Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

10 patients with cataract Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

10 patients after minimally invasive glaucoma surgery (MIGS) Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

10 patients after partial corneal transplantation Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

5 patients with demodicosis Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

5 patients with conjunctival pathologies Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

5 patients with Acanthamoeba keratitis Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.

5 patients with aniridia Device: Ultrahigh resolution Spectral Domain OCT
A spectrometer based ultrahigh resolution Spectral Domain OCT (SDOCT) system operating at 800 nm for the anterior chamber will be employed in the present study. The spectrum of the Ti:Sapphire laser light source is centered at 800 nm. With a full width at half maximum bandwidth of 170 nm, the axial resolution is 1.3 μm in the cornea. The transverse resolution of the employed OCT system is 21 μm at the front surface of the cornea. For measurement, patients will place their head in a modified slit lamp head rest. During the measurement period, patients will be asked to look straight forward onto an internal fixation target and to avoid blinking. Different scattering patterns, e.g. raster, circular and spiral scans will be employed.




Primary Outcome Measures :
  1. Measurement of corneal layers in ultrahigh-resolution OCT [ Time Frame: 60 minutes ]
    Measurement of corneal layers in ultrahigh-resolution OCT of eyes with pathological changes in structures of the anterior eye segment.



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Criteria

Inclusion Criteria:

  • For patients with meibomian gland dysfunction (MGD):

MGD as evidenced by clinical features and gland expression (MGD Grading Scheme, Appendix I (Opitz, Harthan et al. 2015))

  • For cataract patients:

Cataract as evidenced from slit lamp examination, stage range between NII-NIII, CII-CIV, PII-PIII according to The Lens Opacity Classification System II (LOCS II) (Chylack, Leske et al. 1989) (Appendix II)

  • For patients after minimally invasive glaucoma surgery (MIGS):

Patients with history of MIGS secondary to glaucoma

  • For patients with demodicosis:

Demodicosis as evidenced from slit lamp examination and presence of Demodex confirmed by microscopic examination of the eye lashes (Liu, Sheha et al. 2010)

  • For patients with conjunctival pathologies (cyst, naevus, pterygium):

Conjunctival pathologies with a clinical diagnosis of the respective

  • For patients with Acanthamoeba keratitis:

Acanthamoeba keratitis as evidenced from slit lamp examination and confirmed by polymerase chain reaction (PCR) analysis of corneal epithelial and tear samples and culture isolation (Lehmann, Green et al. 1998)

  • For aniridia patients:

Anirida as evidenced from slit lamp examination

Exclusion Criteria:

  • Presence of any abnormalities preventing reliable measurements as judged by the investigator
  • Pregnancy, planned pregnancy or lactating

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03461978


Locations
Layout table for location information
Austria
Medical University Vienna, Department of Clnical Pharmacology
Vienna, Austria, 1090
Sponsors and Collaborators
Medical University of Vienna

Publications:
Layout table for additonal information
Responsible Party: Gerhard Garhofer, Assoc. Prof. Priv.-Doz. Dr., Medical University of Vienna
ClinicalTrials.gov Identifier: NCT03461978     History of Changes
Other Study ID Numbers: OPHT - 010616
First Posted: March 12, 2018    Key Record Dates
Last Update Posted: October 25, 2018
Last Verified: October 2018

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No

Additional relevant MeSH terms:
Layout table for MeSH terms
Eye Diseases
Eye Abnormalities
Eye Diseases, Hereditary
Eye Infections, Parasitic
Eye Infections
Cataract
Keratitis
Aniridia
Acanthamoeba Keratitis
Lens Diseases
Corneal Diseases
Iris Diseases
Uveal Diseases
Congenital Abnormalities
Genetic Diseases, Inborn
Parasitic Diseases
Amebiasis
Protozoan Infections