Working… Menu

The MORE Study: Manifest vs. Online Refraction Evaluation (MORE)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Identifier: NCT03313921
Recruitment Status : Active, not recruiting
First Posted : October 18, 2017
Last Update Posted : September 3, 2019
Information provided by (Responsible Party):
Robert P.L. Wisse, MD PhD, UMC Utrecht

Brief Summary:

The assessment of the refractive state of the eye is a fundamental and important part of ophthalmic and optometric clinical practice. The development of an unsupervised online subjective refraction method makes a refraction more accessible and can be quite cost-saving.

In this study, the investigators want to validate an online refraction method which was recently created in the Netherlands. The study comprises two different set of participants: Part one contains fifty healthy volunteers, 18-40 years of age, with a refractive error and no other ophthalmic pathology. Part two contains fifty patients with an ophthalmic pathology.

The online refraction outcomes will be compared to a manifest refraction and automated refraction in a cross-sectional study design.

Condition or disease Intervention/treatment Phase
Refraction Error Myopia Astigmatism Diagnostic Test: Online Manifest Refraction Not Applicable

Detailed Description:

Uncorrected refractive errors cause significant economic implications in both high and low income countries in terms of the loss of potential productivity (Williams et al. (2015)). The prevalence of uncorrected refractive errors is, despite of the available clinical services, still huge; visual impairment is in 42 percent of the cases the result of an uncorrected refractive error worldwide (Williams et al. (2015)). Even in high income countries, this issue remains prevalent. Therefore, the access to the available clinical services has to be simplified. The development of an online refraction method will make a refraction more accessible for patients and can be cost-saving. Clinicians can easily take an online method to places where it's needed for example in low income countries.

There are several methods to measure a refractive error. The 'golden standard' to prescribe spectacles is a manifest refraction (Thibos, Hong, Bradley & Applegate (2004)). This method was already described by F.C. Donders in 1864 and is performed with trial lenses and a visual acuity chart to measure the refraction error (Donders (1864)). An automated refraction is a quick routine machine based assessment, mainly used as a starting point for a manifest refraction and is based on retinoscopy (Nissman et al., (2004)).

At the moment, several online refraction methods are available. However, these methods are not scientifically validated, unavailable outside the United States of America (USA) or not designed for customers. One of these online refraction methods is Opternative (Opternative (2017)). Opternative is currently used in the USA and is still developing (Opternative (2017)). It's a self-directed online refraction method using a computer-based response to presented stimuli with the use of a smartphone and a computer. Another method is EyeNetra (EyeNetra (2017) & Ohlendorf, Leube & Wahl (2016)). The use of this method is limited due to the need of special equipment such as a portable autorefractor, an autolensometer and a phoropter. Therefore, EyeNetra is mainly designed for optometrists and ophthalmologists for low-income populations. The same applies to SVOne; this method uses a Hartmann-Shack wavefront aberrometer which the user can attach to a smartphone (Ohlendorf, Leube & Wahl (2016)). Other online refraction methods are 6over6, but this method has not been released yet (6over6, (2017)), and Warby Parker (Warby Parker, (2017)).

There are also online visual acuity tests to measure the visual acuity only. The mobile devices to test the visual acuity are PeekVision, 6over6, Opternative, Eyenetra and DigiSight (Ludwig et al., (2016)).

Currently, digitalization is affecting our way of life. Technology can be used to design products to easily determine if someone has a refractive error. This can, in the future, solve a big part of the problem of uncorrected refractive errors and the leading cause of blindness worldwide. The aim of this study is to validate a recently created online refraction method by comparing the outcomes of the online refraction method with the 'golden standard' manifest refraction.

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Actual Enrollment : 150 participants
Allocation: N/A
Intervention Model: Single Group Assignment
Intervention Model Description: cross-sectional open-label non-inferiority assessment of a novel diagnostic entity compared to current gold-standard in two seperate groups of patients (healthy and diseased)
Masking: None (Open Label)
Primary Purpose: Diagnostic
Official Title: The MORE Study: Manifest vs. Online Refraction Evaluation. A Clinical Validation of Online Refraction
Actual Study Start Date : January 4, 2018
Actual Primary Completion Date : July 24, 2019
Estimated Study Completion Date : December 2019

Resource links provided by the National Library of Medicine

Arm Intervention/treatment
Experimental: Online Manifest Refraction
All participants will undergo three assessments of refractive error, in random order. All will perform an unsupervised manifest refraction with the use of a computer screen and their smartphone. Next, a regular manifest refraction assessment performed by an optometrist will function as active comparator. An automated refraction assessment will be performed to relate the quality and repeatability of the online refraction to another unsupervised method of refraction assessment.
Diagnostic Test: Online Manifest Refraction

The online manifest refraction is performed with a web-based application and consists of an assessment of visual acuity, an assessment of spherical refractive error, and an assessment of cylinder refractive error. The software is a class 1 CE-approved medical device.

The automated refraction is measured with a regular office-based autorefractor device; TOPCON RM-8000.

Other Name: Easee online refraction

Primary Outcome Measures :
  1. Refractive error [ Time Frame: All three measurements (automated refraction, manifest refraction and online refraction) will be performed subsequently on the same 1 day. Data collection will take place between november 2017 and january 2018. No follow up measurements are required. ]
    The refractive error is recorded in a Sphere power (D), a Cylinder power (D) and a Cylinder axis (°). These are converted into vectors by Fourier analysis.

Secondary Outcome Measures :
  1. Maximum distance visual acuity [ Time Frame: The visual acuity test will take place on the same 1 day as the other measurements. Data collection will take place between november 2017 and january 2018. No follow up measurements are required. ]
    The maximum visual acuity as assessed during the refraction procedure using an ETDRS visual acuity chart and converted into logMAR values.

  2. Participant satisfaction [ Time Frame: The questionnaire will be filled in on the same 1 day as the other measurements. Data collecting will take place between november 2017 and january 2018. No follow up measurements are required. ]
    Questionnaire on user experience of the smartphone application.

  3. Telemetry [ Time Frame: Measurements of the duration of the online test will happen 1 day during the online refraction test. Collecting data will take place between November 2017 and January 2018. No follow up measurements are required. ]
    Duration of the online test time

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   18 Years to 40 Years   (Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes

inclusion criteria:

  1. Group one:

    • Age: 18-40 years
    • Master the Dutch language
    • Capable to perform the tests adequately.
  2. Group two:

    • Age: 18-40 years
    • Master the Dutch language
    • Capable to perform the tests adequately.
    • Diagnosis of keratoconus.

Exclusion Criteria:

  1. Group one:

    • No informed consent
    • Diabetes
    • Pregnancy or lactation
    • High hyperopia/myopia (>6D)
    • An ophthalmic history besides ametropia
  2. Group two:

    • No informed consent
    • Diabetes
    • Pregnancy or lactation
    • High hyperopia/myopia (>6D)

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT03313921

Layout table for location information
University Medical Center Utrecht
Utrecht, Netherlands
Sponsors and Collaborators
UMC Utrecht
Layout table for investigator information
Principal Investigator: Robert Wisse, MD PHD UMC Utrecht
Additional Information:
Publications automatically indexed to this study by Identifier (NCT Number):
Layout table for additonal information
Responsible Party: Robert P.L. Wisse, MD PhD, Ophthalmologist, UMC Utrecht Identifier: NCT03313921    
Other Study ID Numbers: NL61478.041.17
First Posted: October 18, 2017    Key Record Dates
Last Update Posted: September 3, 2019
Last Verified: August 2019
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by Robert P.L. Wisse, MD PhD, UMC Utrecht:
online assessment
refractive error
Additional relevant MeSH terms:
Layout table for MeSH terms
Refractive Errors
Eye Diseases