Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Personalized Nutrition for Pre-Diabetes

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT03222791
Recruitment Status : Recruiting
First Posted : July 19, 2017
Last Update Posted : November 17, 2017
Sponsor:
Information provided by (Responsible Party):
Weizmann Institute of Science

Brief Summary:
The Personalized Nutrition Project for Prediabetes (PNP3) study will investigate whether personalized diet intervention will improve postprandial blood glucose levels and other metabolic health factors in individuals with prediabetes as compared with the standard low-fat diet.

Condition or disease Intervention/treatment Phase
Pre Diabetes Other: Algorithm-based diet Other: Mediterranean-style low-fat diet Not Applicable

Detailed Description:

Blood glucose levels are rapidly increasing in the population, as evident by the sharp incline in the prevalence of prediabetes and impaired glucose tolerance estimated to affect, in the U.S. alone, 37% of the adult population. Chronic hyperglycaemia is a significant risk factor for type II diabetes mellitus (TIIDM), with up to 70% of prediabetics eventually developing the disease. It is also linked to other manifestations, collectively termed the metabolic syndrome, including obesity, hypertension, non-alcoholic fatty liver disease, hypertriglyceridemia and cardiovascular disease.

As blood glucose levels are mainly affected by food consumption, the growing number of blood glucose abnormalities is likely attributable to nutrition. Indeed, dietary and lifestyle changes normalize blood glucose levels in 55% -80% of the cases. Therefore, maintaining normal blood glucose levels is critical for preventing diabetes and its metabolic complications.

Currently, there are no effective methods for predicting the post prandial glycemic response (PPGR) of people to food. The current practice of using the meal carbohydrate content is a poor predictor of the PPGR and has limited efficacy.The glycemic index (GI), which quantifies PPGR to consumption of a single tested food type, and the derived glycemic load have limited applicability in assessing the PPGR to real-life meals consisting of arbitrary food combinations and varying quantities, consumed at different times of the day, and at different proximity to physical activity and other meals. Indeed, studies examining the effect of diets with a low glycemic index on TIIDM risk, weight loss, and cardiovascular risk factors yielded mixed results. The limited success of GI measure is probably due to the fact that it is a general index, which does not take into consideration the large variation between individuals in their glycemic response to food. It can be concluded, therefore, that in order to control glycemic response of an individual, a personalized tailored diet which takes into account various factors is required. Although genetic factors influence the levels of fasting blood glucose and glycemic response to food, these factors only explain approximately 10% of the variance in the population. Supporting this claim is the fact that the number of people with diabetes is increasing in recent years regardless of patients' genetic background. In contrast, environmental factors such as the composition of the intestinal bacteria and their metabolic activity may affect the glycemic response. The entire bacteria population in the digestive tract (microbiome) consist of ~1,000 species with a genetic repertoire of ~3 million different genes. The microbiome is directly affected by our diet and directly affect the body's response to food. This special relationship between the host and the intestinal flora is reflected by the composition of bacteria unique to type 2 diabetes and in the significant changes in the bacteria composition upon transition from a diet rich in fiber to a "Western" diet rich in simple sugars.

The study is conducted to evaluate a highly accurate algorithm developed at the Weizmann Institute of Science for predicting the personalized glucose response to food for each person. The algorithm‟s predictions are based on many personal measurements, including blood tests, personal lifestyle and gut bacteria. In a small-scale pilot study that was conducted using this algorithm, the investigators personally tailored dietary interventions to healthy and prediabetic people, which resulted in significantly improved PPGRs accompanied by consistent alterations to the gut microbiota. These findings led the investigators to hypothesize that tailoring personalized diets based on PPGRs predictions may achieve better outcomes in terms of controlling blood glucose levels and its metabolic consequences relative to the current standard nutritional therapy for prediabetes.


Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 200 participants
Allocation: Randomized
Intervention Model: Parallel Assignment
Masking: Single (Participant)
Primary Purpose: Prevention
Official Title: Personalized Nutrition for Pre-Diabetes
Actual Study Start Date : February 1, 2017
Estimated Primary Completion Date : February 2018
Estimated Study Completion Date : August 2018

Resource links provided by the National Library of Medicine

MedlinePlus related topics: Prediabetes

Arm Intervention/treatment
Experimental: Algorithm-based diet
Subjects randomized to this arm will receive personally tailored dietary recommendations based on their predicted glycemic responses according to the study algorithm.
Other: Algorithm-based diet
Personalized nutrition plan based on an algorithm for predicting the personalized glucose response to food. The algorithm's predictions are based on many personal measurements, including blood tests, personal lifestyle and gut bacteria.

Mediterranean-style low-fat diet
Subjects randomized to this arm will receive nutritional recommendations according to the standard Israeli dietary approach for treating pre-diabetes: Mediterranean-style low-fat diet.
Other: Mediterranean-style low-fat diet
The Israeli standard of care dietary guidelines for prediabetes.




Primary Outcome Measures :
  1. Evaluation of the total daily time of plasma glucose levels below 140 mg/dl [ Time Frame: 6 months ]
    Total daily plasma glucose levels will be evaluated by using a Continuous glucose monitoring (CGM)

  2. Mean change in HbA1C from the baseline level [ Time Frame: 6 months ]
    Difference of at least 0.1% in the reduction of HbA1C between control group and experimental group

  3. Mean change in Glucose Tolerance Test from the baseline level [ Time Frame: 6 months ]
    GTT glucose values (mg/dl)


Secondary Outcome Measures :
  1. Change is Fasting plasma glucose from baseline [ Time Frame: 6 months ]
    Fasting glucose values (mg/dl)

  2. Change in HOMA-IR from baseline [ Time Frame: 6 months ]
    Change in insulin sensitivity from baseline to 6 months will be measured via HOMA-IR


Other Outcome Measures:
  1. Patients compliance evaluation using a compliance questionnaire [ Time Frame: 6 months, 12 months ]
    Follow up questionnaire completed independently by the patients



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years to 55 Years   (Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Criteria

Inclusion Criteria:

  • HbA1C 5.7 - 6.4
  • Fasting Glucose 100 - 125 mg/dl
  • Age - 18-55
  • Capable of working with smartphone application

Exclusion Criteria:

  • Antibiotics/antifungal in the last 3 month
  • Use of anti-diabetic and/or weight-loss medication
  • People under another diet regime and/or a dietitian consultation/another study
  • Pregnancy, fertility treatments
  • Chronic disease (e.g. HIV, Cushing syndrome, CKD, acromegaly, hyperthyroidism etc.)
  • Cancer and recent anticancer treatment
  • Psychiatric disorders
  • Coagulation disorders
  • IBD (inflammatory bowel diseases)
  • Bariatric surgery
  • Alcohol or substance abuse

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03222791


Contacts
Layout table for location contacts
Contact: Orly Ben-Yacov +972-8-9344307 orlyby@weizmann.ac.il
Contact: Michal Rein +972-8-9344307 michal.rein@weizmann.ac.il

Locations
Layout table for location information
Israel
The Weizmann Institute of Science Recruiting
Rehovot, Israel
Contact: Orly Ben-Yacov       orlyby@weizmann.ac.il   
Sponsors and Collaborators
Weizmann Institute of Science
Investigators
Layout table for investigator information
Principal Investigator: Eran Segal, Prof. Weizmann Institute of Science
Principal Investigator: Eran Elinav, MD Weizmann Institute of Science

Layout table for additonal information
Responsible Party: Weizmann Institute of Science
ClinicalTrials.gov Identifier: NCT03222791     History of Changes
Other Study ID Numbers: 20170117
First Posted: July 19, 2017    Key Record Dates
Last Update Posted: November 17, 2017
Last Verified: November 2017

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by Weizmann Institute of Science:
Diabetes
Additional relevant MeSH terms:
Layout table for MeSH terms
Diabetes Mellitus
Prediabetic State
Glucose Intolerance
Glucose Metabolism Disorders
Metabolic Diseases
Endocrine System Diseases
Hyperglycemia