ClinicalTrials.gov
ClinicalTrials.gov Menu

Repeat CT for Evaluation of Inter- and Intrafraction Changes During Curative Thoracic Radiotherapy (REACT)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT03024138
Recruitment Status : Recruiting
First Posted : January 18, 2017
Last Update Posted : March 1, 2018
Sponsor:
Information provided by (Responsible Party):
C.T. Muijs, University Medical Center Groningen

Brief Summary:

Radiotherapy (combined with chemotherapy) is increasingly applied in the curative treatment of tumours located in the thoracic region (esophageal cancer, lung cancer, breast cancer, and (non) Hodgkin lymphoma). Accurate radiotherapy planning and delivery is essential for the treatment to be effective. However, this accuracy is compromised by tumour and organ motion. Radiotherapy treatment planning is typically performed on a planning-CT scan recorded several days prior to commencement of radiotherapy. Inter-fraction set up variations and organ motion during treatment can lead to differences between the calculated dose distribution on the planning-CT and the radiation dose actually received by the tumour and normal organs. Accurate assessment of these effects is essential to determine optimal margins in order to irradiate the tumour adequately while minimizing the dose to the organs at risk (OARs).

In the near future, patients with esophageal cancer, lung cancer, breast cancer and (non) Hodgkin lymphoma are excellent candidates for proton beam therapy (PBT), which enables marked reductions of the radiation dose to the OARs and thus decreasing the risk of radiation induced cardiac and lung toxicity. However, for PBT using pencil beam scanning (PBS), knowledge of tumour and organ motion will be even more important. The potential major advantages of PBS for tumours in the thoracic region are challenged by the respiratory motion of the tumour, breast, esophagus, diaphragm, heart, stomach, and lungs. Setup errors and inter- and intra-fraction organ motion cause geometric displacement of the tumours and normal tissues, which can cause underdosage of the target volumes and overdosage of the organs at risk. Furthermore, it can result in changes in tissue densities in the beam path, which can alter the position of the Bragg peaks and lead to distorted dose distributions. If pencil beam scanning techniques are used to treat moving tumours, there is interplay between the dynamic pencil beam delivery and target motion. This phenomenon can cause additional deterioration of the delivered dose distribution, usually manifesting as significant local under and/or over dosage. It is therefore essential to incorporate motion-related uncertainties during treatment planning.

The main objective of this study is to evaluate the impact of inter-fraction tumour and organ motion - while taking into account intra-fraction movements appropriately - on photon and proton radiotherapy treatment planning in order to yield robust intensity modulated photon and/or proton treatment plans.

Objective: To evaluate the impact of inter-fraction tumour and organ geometrical dislocation for moving tumours on photon and proton radiotherapy treatment plans in order to create robust intensity modulated photon- and/or proton treatment plans.

Study design: Pilot-study (80 patients).

Study population: Patients with esophageal cancer (EC), (non) small cell lung cancer ((N)SCLC) stage III, breast cancer, or (non) Hodgkin lymphoma who will be treated with radiotherapy (with or without chemotherapy) with curative intent.

Intervention (if applicable): Not applicable.

Main study parameters/endpoints: Robustness parameters (homogeneity index; coverage of clinical target volume), dose to organs at risk (OARs), such as the heart (mean heart dose, MHD) and the lungs (mean lung dose, MLD).

Nature and extent of the burden and risks associated with participation, benefit and group relatedness: During the radiotherapy treatment course, patients will undergo weekly repeat planning CT scans in treatment position without contrast agents in order to evaluate the impact of inter-fraction tumour and organ motion.

Furthermore, additional CBCTs are collected after 10 radiotherapy fractions to assess the intra-fraction motion.

The additional radiation dose of these 3-6 4D-CT's and 10 CBCTs is low (4-6 x 25-30mSv + 10 x 7mSv results in an effective dose < 250mSv) compared to the therapeutic radiation dose (40-60Gy). The risks are therefore negligible and the burden is low.


Condition or disease Intervention/treatment
Thoracic Tumor Radiation: Repeat CT scan

Study Type : Observational
Estimated Enrollment : 80 participants
Observational Model: Cohort
Time Perspective: Prospective
Official Title: Repeat CT for Evaluation of Inter- and Intrafraction Changes During Curative Thoracic Radiotherapy; An Exploratory Pilot Study (REACT)
Study Start Date : December 2016
Estimated Primary Completion Date : December 2018
Estimated Study Completion Date : December 2018

Group/Cohort Intervention/treatment
Repeat CT Radiation: Repeat CT scan



Primary Outcome Measures :
  1. Changes in dose volume histogram (DVH) parameters (in Gy or volume %) during weekly evaluation of the intra- and inter fraction motion. [ Time Frame: 3-6 weeks ]

Secondary Outcome Measures :
  1. Intrafraction variation in tumour position and organ motion during 3-6 weeks of radiotherapy [ Time Frame: 3-6 weeks ]
  2. Interfraction variation in tumour position and organ motion during 3-6 weeks of radiotherapy [ Time Frame: 3-6 weeks ]


Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Sampling Method:   Probability Sample
Study Population
  1. Patients with esophageal cancer (adeno and squamous cell carcinoma), who will be treated with radiotherapy with curative intent, with or without chemotherapy (followed by surgery).
  2. Patients with non-small-cell lung cancer (NSCLC) of any histological subtype, and small-cell lung cancer (SCLC) stage III, who will be treated with radiotherapy with curative intent in combination with chemotherapy.
  3. Patients with breast cancer of any histological subtype, who will be treated with radiotherapy with curative intent.
  4. Patients with (non) Hodgkin lymphoma undergoing thoracic radiotherapy in a curative treatment setting.
Criteria

Inclusion Criteria:

  • Histologically proven esophageal cancer, stage III NSCLC or SCLC, breast cancer, or (non) Hodgkin lymphoma.
  • Scheduled for external-beam photon radiotherapy to the thoracic region with curative intention
  • Scheduled for (neo-)adjuvant or primary (chemo)radiotherapy
  • WHO 0-2.
  • Age >= 18 years
  • Written informed consent.

Exclusion Criteria:

  • Relative contra-indications, such as pain, for lying on the treatment or CT couch
  • Non compliance with any of the inclusion criteria.

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT03024138


Contacts
Contact: Lotte Kors, MSc +31 503617244 l.w.kors@umcg.nl

Locations
Netherlands
UMCG Recruiting
Groningen, Netherlands, 9713GZ
Contact: Lotte Kors, MSc    +31 503617244    l.w.kors@umcg.nl   
Sponsors and Collaborators
University Medical Center Groningen

Responsible Party: C.T. Muijs, Principal investigator, University Medical Center Groningen
ClinicalTrials.gov Identifier: NCT03024138     History of Changes
Other Study ID Numbers: RT 2016-02; REACT
First Posted: January 18, 2017    Key Record Dates
Last Update Posted: March 1, 2018
Last Verified: February 2018
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No

Additional relevant MeSH terms:
Thoracic Neoplasms
Neoplasms by Site
Neoplasms