Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Diffusion Spectroscopy in Stroke (ISIS)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT02833961
Recruitment Status : Completed
First Posted : July 14, 2016
Last Update Posted : August 26, 2021
Sponsor:
Information provided by (Responsible Party):
Institut National de la Santé Et de la Recherche Médicale, France

Brief Summary:

Cerebral vascular disorder is one of the most fatal diseases despite current advances in medical science. The large number of negative clinical trials on neuroprotection in acute stroke is a pointer to the fact that translating better understanding of the pathogenesis and pathophysiology to clearly beneficial treatment strategies remains a daunting task. This project aims at elucidating the plausible biophysical events that affect water and metabolite diffusion in brain tissue after ischemia, by combining the information provided by two advanced methods of magnetic resonance (MR) diffusion imaging: diffusional kurtosis imaging and diffusion-weighted spectroscopy.

Diffusion weighted imaging (DWI) has been established as a major tool for the early detection of stroke. However, information obtained using conventional DWI may be incomplete. Diffusional kurtosis (K) is a quantitative measure of the complexity or heterogeneity of the microenvironment in white and grey matter, which offers complementary information and may potentially be a more sensitive biomarker for probing pathophysiological changes. In addition, to gain more specific insights into molecular mobility in the intracellular environment, it is beneficial to assess the diffusion properties of metabolites, such as N-acetylaspartate (NAA), creatine and phosphocreatine (Cr), and choline containing compounds (Cho). Assessment of metabolite diffusion changes by diffusion-weighted spectroscopy (DWS) provides information specific to the intracellular environment. In particular, thanks to the specific compartmentation of NAA almost exclusively in neurons and of Cho in glial cells, the diffusion properties of these metabolites may provide specific insights into the pathological processes occurring independently in the two cell types. In addition, measuring a temporal profile of diffusion coefficient of these compounds may help clarify underlying pathophysiological changes in neuronal cells during acute ischemia.

With the help of these two advanced methods, a proof-of-concept trial is proposed on 24 healthy subjects and 24 ischemic stroke patients. Ischemic stroke patients will be scanned three times with a 3T MR scanner (before day 10 post-stroke, around week 4 and 3 months), in order to extract diffusion kurtosis imaging (DKI) and DWS metrics and understand the dynamics of the cellular mechanisms at play in cerebral ischemia. The goal of this study is to investigate neuronal and glial metabolite diffusion changes at different time points after ischemic stroke, in both infarcted and non-infarcted hemispheres. The aim is to get non-invasively important information on the evolution of the cellular damage in this disease, and possibly distinguishing between neuronal and glial processes (by measuring the metrics extracted for these two sequences), as well as on the different mechanisms leading to metabolite diffusion changes in the two brain areas, thus providing a great impact on the strategy of treatment for patients with cerebral infarction.


Condition or disease Intervention/treatment Phase
ISCHEMIC STROKE Device: Magnetic resonance imaging Not Applicable

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Actual Enrollment : 47 participants
Allocation: Non-Randomized
Intervention Model: Parallel Assignment
Masking: None (Open Label)
Primary Purpose: Other
Official Title: DIFFUSION SPECTROSCOPY AND IMAGING IN ACUTE STROKE
Actual Study Start Date : July 28, 2016
Actual Primary Completion Date : October 25, 2019
Actual Study Completion Date : October 25, 2019

Arm Intervention/treatment
Experimental: ISCHEMIC STROKE
ischemic stroke admitted in the Pitié Salpêtrière Stroke unit in Paris
Device: Magnetic resonance imaging
Active Comparator: HEALTHY SUBJECTS
Age and gender-matched healthy volunteers
Device: Magnetic resonance imaging



Primary Outcome Measures :
  1. ADC measurements (in mm2/second) of metabolites within the ischemic lesion [ Time Frame: up to 14 days ]

Secondary Outcome Measures :
  1. Relative change of the ADC values (in %) of the metabolites over time [ Time Frame: 1 and 3 months ]
  2. Diffusivity measure within the ischemic lesion (in mm2/second). [ Time Frame: up to14 days ]
  3. Relative change of the diffusivity measure values (in %) of water over time [ Time Frame: 1 and 3 months ]


Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years to 85 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Criteria

Inclusion Criteria:

first-ever infarct lesion Infarct volume > 8 cm3 written consent French social security

Exclusion Criteria:

age <18 or >80 years contraindication to MRI Life-threatening disease that could compromise the follow-up Pregnant and breast-feeding women Patients under a legal gardian

We will also include 24 healthy subjects for comparison with no history of neurological disease.


Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT02833961


Locations
Layout table for location information
France
Institut du cerveau et de la moelle, Hôpital Pitié-Salpétrière
Paris, France, 75013
Sponsors and Collaborators
Institut National de la Santé Et de la Recherche Médicale, France
Layout table for additonal information
Responsible Party: Institut National de la Santé Et de la Recherche Médicale, France
ClinicalTrials.gov Identifier: NCT02833961    
Other Study ID Numbers: C16-04
2016-A00362-49 ( Registry Identifier: IDRCB )
First Posted: July 14, 2016    Key Record Dates
Last Update Posted: August 26, 2021
Last Verified: August 2021
Individual Participant Data (IPD) Sharing Statement:
Plan to Share IPD: No
Additional relevant MeSH terms:
Layout table for MeSH terms
Stroke
Ischemic Stroke
Cerebrovascular Disorders
Brain Diseases
Central Nervous System Diseases
Nervous System Diseases
Vascular Diseases
Cardiovascular Diseases