COVID-19 is an emerging, rapidly evolving situation.
Get the latest public health information from CDC:

Get the latest research information from NIH: Menu
Trial record 1 of 1 for:    NCT02029222
Previous Study | Return to List | Next Study

Photon Versus Particle Therapy for Recurrent Lung Cancer; a Planning Study Based on a Reference Dataset of Patients.

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Identifier: NCT02029222
Recruitment Status : Completed
First Posted : January 7, 2014
Last Update Posted : September 4, 2019
University of Pennsylvania
University of Wisconsin, Madison
Information provided by (Responsible Party):
Maastricht Radiation Oncology

Brief Summary:

Patients with lung cancer may develop a second primary tumor or recurrent disease after previous radiotherapy. Surgical salvage therapy is the mainstay of therapeutic options. However, in case of irresectable disease, re-irradiation should be considered. Also in the postoperative setting, re-irradiation is considered after surgical salvage in case of features in the pathology specimen indicating a high risk for subsequent recurrence. However after re-irradiation, there is a high risk of 43% grade 3 (late) toxicity at 5 years (including possible fatal complications) and a relatively low chance of locoregional control of 50% at 5 years. One out of three patients survives re-irradiation without recurrence and severe complications. Improvements in both the risk of radiation-induced complications and the oncological outcome are thus warranted.

Compared to conventional radiotherapy with photons (CRT), particle therapy (PT) has the potential to inflict maximum damage on tumors with minimum collateral damage to neighboring healthy tissue. Given that the cost of particle therapy (PT) is considerably higher than that of conventional radiotherapy (RT) with photons, it is necessary to establish whether these higher costs are worthwhile in light of the expected advantages. Thus, clear evidence of the situations in which PT outperforms conventional photon treatment is needed. Publications on this topic are rare. The only recent publication has analyzed the results of 37 NSCLC patients of whom 9 were re-irradiated with at least 50 Gy using helical tomotherapy [Kruser in press].

We propose an in silico trial to investigate to what extend proton and 12C-ion therapy decrease the amount of irradiated normal tissue in lung cancer patients treated with radiotherapy after an initial radiotherapy treatment.

Condition or disease

Detailed Description:

For this in silico planning study all treatment plans will be performed in centers that are already operating and have experience in treatment planning. Photon treatment plans will be carried out in Maastricht, proton treatment plans at the University of Pennsylvania and the C-ion treatment plans at the University of Wisconsin.

A dataset with state-of-the-art image data is available. 25 patients will be included according to a-priori defined selection criteria. Each patient will function as his or her own control. For this reason, the number of patients per tumor group can be limited to 25 patients per tumor group (power = 80%, alpha = 5%).

The datasets will be stored on a secure website hosted by MAASTRO. High quality CT-images will be used for radiotherapy treatment planning. If available, secondary image information such as FDG-PET and MRI will be used for GTV delineation. All relevant OARs will be delineated in both the primary and secondary studyset. GTV/CTV will be used accordingly to the actual treatment. New DVH's will be calculated for the added OAR. Dose restrictions for the re-irradiation plan will be defined for each individual patient based on the DVH dose in the primary photon treatment plan.

Photons will be planned with direct Aperture Optimized Intensity Modulated Radiotherapy (IMRT). Protons will be planned using active beam delivery with Intensity Modulated proton therapy (IMPT)and carbon-ions with a pencil beam delivery treatment planning technique with gantry. Each participating center will use its own treatment planning system according to standard practice at that center. The GTV to PTV margin will be determined by the individual institutes according to the treatment technique and treatment modality. The same tumor dose, overall treatment time (OTT) and an equal number of fractions will be used for all treatment modalities.

Photon, proton and C-ion treatments will be compared based on dosimetric parameters on normal tissues. In addition, the NTCP for a fixed tumor dose or the same expected TCP will be determined. Cobalt Gy equivalent doses will be used when reporting the proton and carbon-ion dose. In the case of protons, a constant RBE value of 1.1 will be used for both the tumor and the normal tissues. The RBE of carbon-ions will be calculated based on the models used by the participating centers.

Dose in the following structures will be taken into account:

  • Lungs
  • Spinal court
  • Heart
  • Oesophagus

Layout table for study information
Study Type : Observational
Actual Enrollment : 25 participants
Observational Model: Cohort
Time Perspective: Retrospective
Official Title: In Silico Clinical Trial on Re-irradiation Lung Cancer, Comparing Photon, Proton and 12C-ion Therapy: A Multicentric ROCOCO Planning Study Based on a Reference Dataset of Patients.
Actual Study Start Date : December 2013
Actual Primary Completion Date : September 2019
Actual Study Completion Date : September 2019

Resource links provided by the National Library of Medicine

25 NSCLC patients
25 NSCLC patients who received curative radiotherapy. Re-irradiation can either be indicated for primary or secondary cancers in the lung. All patients referred for primary radiotherapy or chemoradiation after curative radiation therapy more or equal to one year ago with overlapping CTV will be included. The organs at risk of the primary tumor are the same organs at risk at the secondary treatment.

Primary Outcome Measures :
  1. The amount of irradiated normal tissue: lung [ Time Frame: Up to ten months (planning time) ]
    - lung: V30, V20, V13, V5, mean lung dose

  2. The amount of irradiated normal tissue: Spinal cord [ Time Frame: Up to ten months ]
    Spinal cord: Dmax

  3. The amount of irradiated normal tissue: esophagus [ Time Frame: Up to ten months ]
    Esophagus: Dmax, mean dose (MD), V55, V35

  4. The amount of irradiated normal tissue: Heart [ Time Frame: Up to ten months ]
    Heart: Total dose (TD), V65, V45, V40, V30, V20, V10, MD

  5. The amount of irradiated normal tissue: Integral dose [ Time Frame: Up to ten months ]
    Integral dose

Secondary Outcome Measures :
  1. Risk of side effects in the irradiated normal tissue [ Time Frame: Up to ten months ]

Other Outcome Measures:
  1. Possibilities of hypofractionation [ Time Frame: Up to ten months ]
    The possibilities of hypofractionation will be explored, as the number of fractions has a strong influence on the treatment dose.

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   Child, Adult, Older Adult
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Sampling Method:   Non-Probability Sample
Study Population
25 patients with SCLC

Inclusion Criteria:

  • Re-irradiation patients for relapsed or second cancers in the left or the right lung
  • Received respitory gated CT (4DCT) and PET (4DPET) scans.
  • The primary treatment was radiotherapy with a curative intent
  • The organs at risk of the primary tumor treatment are the same organs at risk at the secondary treatment
  • 18 years or older

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT02029222

Layout table for location information
Maastricht Radiation Oncology
Maastricht, Netherlands, 6229 ET
Sponsors and Collaborators
Maastricht Radiation Oncology
University of Pennsylvania
University of Wisconsin, Madison
Layout table for investigator information
Principal Investigator: Philippe Lambin, MD, PhD Maastro Clinic, The Netherlands
Layout table for additonal information
Responsible Party: Maastricht Radiation Oncology Identifier: NCT02029222    
Other Study ID Numbers: ROCOCO
First Posted: January 7, 2014    Key Record Dates
Last Update Posted: September 4, 2019
Last Verified: September 2019