We're building a better ClinicalTrials.gov. Check it out and tell us what you think!
ClinicalTrials.gov Menu

Sensory Motor Transformations in Human Cortex

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT01964261
Recruitment Status : Recruiting
First Posted : October 17, 2013
Last Update Posted : June 1, 2022
University of Southern California
Rancho Los Amigos National Rehabilitation Center
Information provided by (Responsible Party):
Richard A. Andersen, PhD, California Institute of Technology

Brief Summary:

This research study is being conducted to develop a brain controlled medical device, called a brain-machine interface. The device will provide people with a spinal cord injury some ability to control an external device such as a computer cursor or robotic limb by using their thoughts along with sensory feedback.

Development of a brain-machine interface is very difficult and currently only limited technology exists in this area of neuroscience. Other studies have shown that people with high spinal cord injury still have intact brain areas capable of planning movements and grasps, but are not able to execute the movement plans. The device in this study involves implanting very fine recording electrodes into areas of the brain that are known to create arm movement plans and provide hand grasping information and sense feeling in the hand and fingers. These movement and grasp plans would then normally be sent to other regions of the brain to execute the actual movements. By tying into those pathways and sending the movement plan signals to a computer instead, the investigators can translate the movement plans into actual movements by a computer cursor or robotic limb.

A key part of this study is to electrically stimulate the brain by introducing a small amount of electrical current into the electrodes in the sensory area of the brain. This will result in the sensation of touch in the hand and/or fingers. This stimulation to the brain will occur when the robotic limb touches the object, thereby allowing the brain to "feel" what the robotic arm is touching.

The device being used in this study is called the Neuroport Array and is surgically implanted in the brain. This device and the implantation procedure are experimental which means that it has not been approved by the Food and Drug Administration (FDA). One Neuroport Array consists of a small grid of electrodes that will be implanted in brain tissue and a small cable that runs from the electrode grid to a small hourglass-shaped pedestal. This pedestal is designed to be attached to the skull and protrude through the scalp to allow for connection with the computer equipment. The top portion of the pedestal has a protective cover that will be in place when the pedestal is not in use. The top of this pedestal and its protective cover will be visible on the outside of the head. Three Neuroport Arrays and pedestals will be implanted in this study so three of these protective covers will be visible outside of the head. It will be possible to cover these exposed portions of the device with a hat or scarf.

The investigators hope to learn how safe and effective the Neuroport array plus stimulation is in controlling computer generated images and real world objects, such as a robotic arm, using imagined movements of the arms and hands.

Condition or disease Intervention/treatment Phase
Quadriplegia Device: Neural Prosthetic System 2 (NPS2) Not Applicable

Layout table for study information
Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 2 participants
Allocation: N/A
Intervention Model: Single Group Assignment
Masking: None (Open Label)
Primary Purpose: Basic Science
Official Title: A Feasibility Study of the Ability of the Neural Prosthetic System 2 to Provide Direct Closed Loop Cortical Control of Extracorporeal Devices Through the Use of Intracortical Microstimulation in Patients With Quadriplegia
Actual Study Start Date : November 1, 2013
Estimated Primary Completion Date : July 31, 2026
Estimated Study Completion Date : January 31, 2027

Arm Intervention/treatment
Experimental: Neural Prosthetic System 2
The Neural Prosthetic System 2 consists of three Neuroport Arrays, which are described in detail in the intervention description. Two of the three Neuroport Arrays are inserted into the posterior parietal cortex, an area of the brain used in reach and grasp planning. The third Neuroport Array is inserted into somatosensory cortex, specifically S1 which represents sensory feedback for the hand and fingers. The arrays are inserted and the percutaneous pedestal is attached to the skull during a surgical procedure. Following surgical recovery the subject will participate in study sessions 3-5 times per week in which they will learn to control an end effector by thought augmented with sensory feedback via intracortical microstimulation. They will then use the end effector to perform various reach and grasp tasks.
Device: Neural Prosthetic System 2 (NPS2)
The NPS2 comprises 2 NeuroPort Arrays (Pt) and 1 NeuroPort Array (SIROF). Each Pt array is comprised of 100 1.5 mm microelectrodes organized on a 4mm x 4mm silicon base that is 0.25 mm thick. Each microelectrode is insulated with Parylene-C polymer and is electrically isolated from neighboring electrodes by non-conducting glass. Of the 100 electrodes, 96 are wire bonded using 25m gold alloy insulated wires sealed with a silicone elastomer. The wire bundle is potted to a printed circuit board with epoxy, the circuit board is inserted into the Patient Pedestal (percutaneous connector), and then the Patient Pedestal is filled with silicone elastomer. Two fine platinum reference wires are also attached to the Patient Pedestal. The Patient Pedestal is 19 mm wide at the skin interface. The SIROF Array is similar to the Pt Array, the only difference is a change in the tip of the electrodes from platinum to sputtered iridium oxide film (SIROF).
Other Name: NeuroPort Array

Primary Outcome Measures :
  1. Patient control over the end effector (virtual or physical) [ Time Frame: One year after array implantation ]

    The primary effectiveness objective of this study is to evaluate the effectiveness of the NPS2 in controlling virtual or physical end effectors. Signals from posterior parietal cortex will allow the subject to control the end effector with accuracy significantly greater than chance; the subject will be able to perceive and discriminate ICMS above the level of chance; and,incorporating stimulation will improve the subject's control over the end effector.

    We will evaluate the effectiveness of the NPS2 primarily by calculating the accuracy of the subjects' control over the end effector with and without ICMS, and comparing these different accuracies to the chance level, and to each other. Each subject will serve as his or her own control.

  2. Absence of infection or irritation [ Time Frame: One year after array implantation ]
    The primary objective of this study is to evaluate the safety of the NPS2. Implantation will not be associated with infection or irritation, and that the serious adverse event rate will not rise above 1%. We will evaluate the safety of the NPS2 by inspecting the subjects' scalps for evidence of reddening or discharge, by performing regularly scheduled neurologic history and physical exam, and by obtaining feedback from the subjects. The condition of the area will be compared with its condition on previous visits, history will be obtained regarding new symptoms and neurological and physical exam will be compared to baseline exams.

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Layout table for eligibility information
Ages Eligible for Study:   22 Years to 65 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No

Inclusion Criteria:

  • High cervical spinal lesion
  • Age 22-65
  • Able to provide informed consent
  • Able to understand and comply with instructions in English
  • Communicate via speech
  • Surgical clearance
  • Life expectancy greater than 12 months
  • Travel up to 60 miles to study locations up to five days per week
  • Caregiver monitor for surgical site complications and behavioral changes on a daily basis
  • Psychosocial support system

Exclusion Criteria:

  • Presence of memory problems
  • Intellectual impairment
  • Psychotic illness or chronic psychiatric disorder, including major depression if untreated
  • Poor visual acuity
  • Pregnancy
  • Active infection or unexplained fever
  • Scalp lesions or skin breakdown
  • HIV or AIDS infection
  • Active cancer or chemotherapy
  • Diabetes
  • Autonomic dysreflexia
  • History of seizure
  • Implanted hydrocephalus shunt
  • Previous neurosurgical history affecting parietal lobe function
  • Medical conditions contraindicating surgery and chronic implantation of a medical device
  • Prior cranioplasty
  • Unable to undergo MRI or anticipated need for MRI during study
  • Nursing an infant or unwilling to bottle-feed infant
  • Chronic oral or intravenous use of steroids or immunosuppressive therapy
  • Suicidal ideation
  • Drug or alcohol dependence
  • Planning to become pregnant, or unwilling to use adequate birth control
  • Implanted Cardiac Defibrillator, Pacemaker, vagal nerve stimulator, or spinal cord stimulator.
  • Implanted deep brain stimulator (DBS), DBS leads, or cochlear implant.

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT01964261

Layout table for location contacts
Contact: Charles Liu, MD, PhD 800-872-2273 chasliu@cheme.caltech.edu
Contact: Richard Andersen, PhD 626-395-8336 ANDERSEN@VIS.CALTECH.EDU

Layout table for location information
United States, California
Rancho Los Amigos National Rehabilitation Center Recruiting
Downey, California, United States, 90242
Contact: Mindy Aisen, MD    562-401-8111    maisen@dhs.lacounty.gov   
University of Southern California Active, not recruiting
Los Angeles, California, United States, 90033
California Institute of Technology Active, not recruiting
Pasadena, California, United States, 91125
Sponsors and Collaborators
Richard A. Andersen, PhD
University of Southern California
Rancho Los Amigos National Rehabilitation Center
Layout table for investigator information
Principal Investigator: Richard A Andersen, PhD California Institute of Technology
Principal Investigator: Charles Liu, MD, PhD University of Southern California
Principal Investigator: Christi Heck, MD, PhD, MMM University of Southern California
Principal Investigator: Mindy Aisen, MD Rancho Los Amigos National Rehabilitation Center
Publications automatically indexed to this study by ClinicalTrials.gov Identifier (NCT Number):
Layout table for additonal information
Responsible Party: Richard A. Andersen, PhD, James G. Boswell Professor of Neuroscience, California Institute of Technology
ClinicalTrials.gov Identifier: NCT01964261    
Other Study ID Numbers: HS-13-00492
First Posted: October 17, 2013    Key Record Dates
Last Update Posted: June 1, 2022
Last Verified: May 2022
Keywords provided by Richard A. Andersen, PhD, California Institute of Technology:
Brain machine interface
brain computer interface
brain control
spinal cord injury
sensory feedback
Additional relevant MeSH terms:
Layout table for MeSH terms
Neurologic Manifestations
Nervous System Diseases