We updated the design of this site on December 18, 2017. Learn more.
ClinicalTrials.gov
ClinicalTrials.gov Menu

Fluorescence Angiography: Planning and Monitoring of Perforator Flaps (AFLU)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.
ClinicalTrials.gov Identifier: NCT01681797
Recruitment Status : Recruiting
First Posted : September 10, 2012
Last Update Posted : October 26, 2017
Sponsor:
Information provided by (Responsible Party):

Study Description
Brief Summary:
The purpose of this study is to determine whether fluorescence angiography is an effectiveness technique for the localization of vascular perforators and their area of perfusion and for the postoperative monitoring of flap perfusion.

Condition or disease Intervention/treatment
Reconstructive Surgery Device: Fluorescence angiography (Fluobeam™ imaging system developed by Fluoptics company)

Detailed Description:

Reconstructive surgery is intended to replace amputated anatomical regions by autologous tissue taken from distant locations: flaps. The goal is to restitute ad integrum with minimal sequelae. Among the flaps available, perforator flaps have the advantage of being highly plastic, large and can be taken from accessory vessels the loss of wich does not compromise the vitality of the sampling site. However their more variable anatomy requires irradiating preoperative morphological assessment (CT angiography) or a doppler ultrasonography that is not always performed by the surgeon himself and does not distinguish between muscle perforator and skin perforator.

Fluorescence angiography is a superficial exploration technique of vascularization. After intravenous injection of a tracer (indocyanine green ICG), fluorescence angiography provides useful surface angiographic imaging in real-time. It can also help in monitoring intraoperative and postoperative quality of vascular anastomoses. Although fluorescence angiography has numerous applications (ophthalmology, neurosurgery, liver transplantation...), its usefulness in surgical flaps is only supported by a few publications. None really validate its clinical value by comparing it to reference investigations (CT angiography or doppler ultrasonography).

40 candidate for reconstructive surgery will be included in this study. The day before surgery, in addition to the usual technique used to locate perforator flaps, the patient will receive an injection of 0.025 mg / kg Infracyanine® (indocyanine green) and the area of interest of the flap will be explored with the Fluobeam™ camera.

Two hours after the surgery, during the usual clinical monitoring of the vitality of the flap, a new injection of Infracyanine® will test perfusion of the flap by measuring fluorescence intensity of the target area. These measurement will then be repeated every 6 hours for 4 days.


Study Design

Study Type : Interventional  (Clinical Trial)
Estimated Enrollment : 40 participants
Intervention Model: Single Group Assignment
Masking: None (Open Label)
Primary Purpose: Other
Official Title: Fluorescence Angiography With Fluobeam™ Camera (Fluoptics Company): Planning and Monitoring of Perforator Flaps
Study Start Date : August 2012
Estimated Primary Completion Date : August 2019
Estimated Study Completion Date : February 2020
Arms and Interventions

Arm Intervention/treatment
Experimental: add-on fluorescence angiography

The surgeon will prescribe the usual morphological assessment of the proposed flap:

  • CT angiography for an anterolateral thigh flap or an epigastric inferior flap
  • A Doppler ultrasonography for a fibula flap.

In addition to the usual radiological technique used to locate the perforating arteries, the patient will have a fluorescence angiography prior to surgery, another just after the end of surgery and then one every six hours during the next 4 days.

Device: Fluorescence angiography (Fluobeam™ imaging system developed by Fluoptics company)
Fluorescence angiography after intravenous injection of Infracyanine® (indocyanine green)
Other Names:
  • The device used in this study is the Fluobeam™ imaging system developed by the company Fluoptics.
  • the technique requires the injection of a tracer Infracyanine® (SERB pharmaceutical company)


Outcome Measures

Primary Outcome Measures :
  1. Comparison between the position of perforator flap determined by fluorescence angiography and the real anatomic position of the flap determined after dissection [ Time Frame: During the first fluorescent angiography ]
    For each flap, the position of the flap determined by fluorescent angiography will be compared with the anatomic position (actual) determined on the relevant flap after dissection (gold standard).


Secondary Outcome Measures :
  1. Comparison between the position of the perforator flap determined by fluorescence angiography and the position of the flap determined by reference imaging techniques relevant to the flap (CT angiography or doppler ultrasonography) [ Time Frame: During the first fluorescent angiography ]
    For each flap, the position of the flap determined by fluorescent angiography will be compared with the position determined by reference imaging techniques relevant to the flap (CT angiography or doppler ultrasonography)

  2. Intraoperative monitoring of the quality of micro-vascular anastomoses using fluorescent angiography [ Time Frame: Just after micro-vascular anastomoses ]

    Intraoperative monitoring of vascular flow through the micro-anastomoses will be determined by:

    • measuring the arterial and venous trans-anastomotic flow (ml / mm)
    • flow measurement (ml / mm) of an equivalent diameter vessel located in the operative field and not affected by the anastomosis
    • intrinsic transit time (in seconds) which is the time required for the fluorescence between the arterial anastomosis and the venous anastomosis
    • the number of leaks around the anastomosis.

  3. Postoperative monitoring of flap perfusion using fluorescence angiography [ Time Frame: Every six hours for four days after surgery ]
    This is to test the hypothesis that the dynamics of the fluorescence intensity in the area of interest is a prognostic factor for postoperative complications.


Eligibility Criteria

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Ages Eligible for Study:   18 Years and older   (Adult, Senior)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No
Criteria

Inclusion Criteria:

  • perforator flap reconstruction whatever the indication (cancer, trauma, malformations). The main targets are the fibula flaps, anterolateral thigh flaps and inferior epigastric flaps
  • consenting patient

Exclusion Criteria:

  • known indocyanine green allergy
  • pregnant woman, parturient woman or nursing woman
Contacts and Locations

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT01681797


Contacts
Contact: Georges BETTEGA, MD, PHD 04 76 76 38 29 ext 33

Locations
France
University Hospital of Grenoble Recruiting
Grenoble, Isere, France, 38043
Contact: Georges BETTEGA, MD, PHD    04 76 76 38 29 ext 33      
Principal Investigator: Georges BETTEGA, MD, PHD         
Sub-Investigator: Denis CORCELLA, MD         
Sub-Investigator: Christian RIGHINI, MD, PHD         
Sponsors and Collaborators
University Hospital, Grenoble
Investigators
Principal Investigator: Georges BETTEGA, MD, PHD University Hospital, Grenoble
More Information

Publications:
Responsible Party: University Hospital, Grenoble
ClinicalTrials.gov Identifier: NCT01681797     History of Changes
Other Study ID Numbers: DCIC/11/13
First Posted: September 10, 2012    Key Record Dates
Last Update Posted: October 26, 2017
Last Verified: October 2017

Keywords provided by University Hospital, Grenoble:
fluorescent angiography
reconstructive surgery
perforator flap