Near-infrared Spectroscopic Measurement in Complex Regional Pain Syndrome
![]() |
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. |
ClinicalTrials.gov Identifier: NCT01586377 |
Recruitment Status
:
Completed
First Posted
: April 26, 2012
Last Update Posted
: July 3, 2013
|
- Study Details
- Tabular View
- No Results Posted
- Disclaimer
- How to Read a Study Record
Condition or disease |
---|
Reflex Sympathetic Dystrophy |
The pathophysiology of CRPS-1 is unknown yet a considerable number of studies suggest that the fundamental cause of abnormal pain is due to microvascular pathology of deep tissues.
Reduced blood flow to deep tissues such as muscle, nerve, and bone can lead to a combination of inflammatory and neuropathic pain processes (Coderre TJ et al. 2010). Evidence to support this model of microcirculatory dysfunction includes observations that skin capillary oxygenation is decreased and skin lactate is increased in affected limbs of patients (total of 11 patients in lactate study) (Birklein F et al. 2000, Manahan AP et al. 2007). It has also been reported that patients with CRPS-I have abnormal vasodilatory responses after sympathetically-mediated vasoconstriction (Dayan L et al. 2008) and decreased concentrations of nitric oxide in the affected limb (Groeneweg JG et al. 2006).
Near-infrared spectroscopy (NIRS) is a non-invasive method of measuring tissue oxygenation using the differential absorption properties of oxygenated and deoxygenated hemoglobin in biological tissue (Creteur J 2008). Near-infrared light is only transmitted through small vessels with diameter less than 1 mm (arterioles, venules and capillaries). Since NIRS is limited to monitoring only small vessels, it can be used to assess oxygen balance in the microcirculation of skeletal muscle (Creteur J 2008).
Premises Premise 1: Complex regional pain syndrome is associated with microcirculatory dysfunction
After an injury to a patient's limb, it is hypothesized that the pressure exerted by that swelling within a relatively confined anatomical space can occlude the capillaries of adjacent tissues and cause a compartment syndrome-like injury. Coderre et al. (2010) have theorized that the resulting microcirculatory dysfunction causes a persistent inflammatory state which is then responsible for pain generation.
In an animal model of ischemia-reperfusion injury used to study CRPS-1, microscopy of muscle and nerve tissue demonstrates microvascular evidence of a slow-flow/no-reflow phenomenon (Coderre TJ et al. 2010). Existence of a slow-flow/no-reflow state causes persistent inflammation in deep tissue. Animals subsequently develop hyperemia and edema, followed by mechano-hyperalgesia, allodynia, and cold-allodynia lasting for at least 1 month (Coderre et al. 2010). This clinical picture is similar to the clinical signs of those patients afflicted with CRPS-1.
Premise 2: Vascular occlusion testing measures microcirculatory dysfunction NIRS measurement of peripheral tissue oxygen saturation (StO2), combined with a reproducible ischemia-reperfusion challenge to induce reactive hyperemia (vascular occlusion testing - VOT), has been described as a valid and reliable method for assessing microcirculatory dysfunction (De Backer et al. 2010). This involves a short period of forearm ischemia by inflating a blood pressure cuff on the upper arm. The blood pressure cuff is then released after approximately 3 minutes and this followed by reperfusion of the forearm. This stimulates the release of endogenous nitric oxide (NO) from the microvascular endothelium (Harel et al 2008). Measurement of this hyperemic response using NIRS has been demonstrated to be a feasible non-invasive method of quantifying microcirculatory function. This technique shares strong correlation with the gold-standard method of strain gauge plethysmography (Harel et al. 2008).
Study Type : | Observational |
Actual Enrollment : | 20 participants |
Observational Model: | Case Control |
Time Perspective: | Prospective |
Official Title: | Near-infrared Spectroscopic Measurement of Tissue Oxygen Saturation and the Vascular Occlusion Test in Complex Regional Pain Syndrome |
Study Start Date : | August 2011 |
Actual Primary Completion Date : | July 2013 |
Actual Study Completion Date : | July 2013 |

Group/Cohort |
---|
CRPS Type 1
Patients with CRPS 1 affecting a single upper limb
|
Healthy volunteers
Volunteers without the diagnosis of CRPS Type 1
|
- Baseline tissue oxygen saturation [ Time Frame: Day 1 ]
- Occlusion slope during vascular occlusion test [ Time Frame: Day 1 ]
- Reperfusion slope during vascular occlusion test [ Time Frame: Day 1 ]
- Delta StO2 [ Time Frame: Day 1 ]Defined as the difference between the maximal tissue oxygenation value after reperfusion and the baseline measurement
- Post-obstructive hyperemic response [ Time Frame: Day 1 ]
- Thenar muscle oxygen consumption [ Time Frame: Day 1 ]

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.
Ages Eligible for Study: | 18 Years to 75 Years (Adult, Senior) |
Sexes Eligible for Study: | All |
Accepts Healthy Volunteers: | Yes |
Sampling Method: | Non-Probability Sample |
Inclusion Criteria:
- Complex regional pain syndrome type 1 (CRPS-I) of one upper extremity.
- Healthy volunteers.
- Diagnosis of CRPS-I established for greater than 12 weeks.
Exclusion Criteria:
- Pregnancy
- Lack of informed consent
- History of peripheral vascular disease requiring angioplasty or bypass surgery
- History of systemic vasculitis
- Current use of vasoactive medications
- Diabetes Type I and II
- Presently smoking

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.
Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT01586377
Canada, Ontario | |
Pain Clinic, St. Joseph's Health Care London Hospitals | |
London, Ontario, Canada, N6A 4V2 |
Principal Investigator: | Geoff A Bellingham, MD FRCPC | University of Western Ontario, Canada |
Publications:
Publications automatically indexed to this study by ClinicalTrials.gov Identifier (NCT Number):
Responsible Party: | Geoff Bellingham, Principal Investigator, Lawson Health Research Institute |
ClinicalTrials.gov Identifier: | NCT01586377 History of Changes |
Other Study ID Numbers: |
R-11-382 18119 ( Other Identifier: Research Ethics Board number ) |
First Posted: | April 26, 2012 Key Record Dates |
Last Update Posted: | July 3, 2013 |
Last Verified: | July 2013 |
Keywords provided by Geoff Bellingham, Lawson Health Research Institute:
Complex regional pain syndrome Near Infrared Spectroscopy Vascular Occlusion Test |
Additional relevant MeSH terms:
Complex Regional Pain Syndromes Reflex Sympathetic Dystrophy Autonomic Nervous System Diseases |
Nervous System Diseases Peripheral Nervous System Diseases Neuromuscular Diseases |