The Effect of 6 Months of Local Vibration Training in Institutionalized Elderly

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Identifier: NCT01499186
Recruitment Status : Completed
First Posted : December 26, 2011
Last Update Posted : March 18, 2014
Information provided by (Responsible Party):
Universitaire Ziekenhuizen Leuven

Brief Summary:
This randomized controlled intervention study in institutionalized elderly investigates the effect of 6 months of local vibration therapy applied on the thigh and hip on muscle strength, muscle mass, bone density, and functionality.

Condition or disease Intervention/treatment Phase
Osteoporosis Sarcopenia Other: Local Vibration Not Applicable

Detailed Description:

As the world population ages, osteoporosis (skeletal fragility) and sarcopenia (decline in muscle mass and muscle strength) are becoming increasingly important public health concerns. Both osteoporosis and sarcopenia contribute to an increased fall risk and an increased number of hip and vertebral fractures. Clearly, the clinical and economic consequences of osteoporosis and sarcopenia, and the resulting falls and fractures, call for major efforts to search for efficient and feasible interventions to prevent or reverse bone and muscle loss. The present project is intended to partly meet this need.

Whole Body Vibration (WBV) training might be an efficient training method. During WBV the subject stands on a platform that generates vertical sinusoidal vibrations. These mechanical stimuli are transmitted to the body where they stimulate the bone and reflexive muscle contractions will be generated. In previous studies performed by the same group, the investigators found that WBV training (frequency 30-40Hz, peak acceleration 3-10g) can be seen as an efficient alternative for strength training, both in the young sedentary as well as in the elderly population. Additionally, the investigators were able to show that 6 months vibration training in elderly females resulted in a net benefit of about 1.5% in bone mineral density of the hip compared with controls. Finally, the investigators have recently shown that long-term vibration training results in an increase of quadriceps muscle mass.

From the above it appears that vibration therapy could be a plausible candidate as an efficient combination therapy for elderly subjects at risk for osteoporosis and sarcopenia and, by implication, the therapy might help to reduce the number of falls and fractures. However, many questions regarding vibration as a therapy still need to be answered in order to optimize both the efficacy and safety of its application. The application methods of vibration therapy should be optimized to be applicable in a broader range of subjects as well as to deliver the stimuli more targeted to specific regions of interest. Whole body vibration in its present form (subjects standing on a vibrating platform) is inadequate for a large part of the elderly population (e.g., subjects with osteoarthritis at the knee, wheelchair bound subjects, bedridden subjects). Additionally, the transmission of the vibration stimulus from the feet to the hip during WBV is probably insufficient to provoke optimal adaptations at this level. Delivering the vibration stimuli locally (i.e. more targeted) at those regions at risk for fractures or in need for muscle strengthening might be an efficient alternative application method.

The main aim of this pilot research is to obtain data that should allow the investigators to optimize the efficacy and safety of the vibration excitation pattern as well as to optimize the application method. With the ageing of the world population and the predicted rise in fall and fracture rates, appropriate strategies to combat muscle and bone loss will have far reaching implications in containing future health care expenditure for the elderly and in reducing the need for institutionalized care.

Study Type : Interventional  (Clinical Trial)
Actual Enrollment : 50 participants
Allocation: Randomized
Intervention Model: Parallel Assignment
Masking: Single (Investigator)
Primary Purpose: Treatment
Official Title: The Effect of 6 Months of Local Vibration Training of the Thigh and Hip on Muscle Strength, Muscle Mass, Bone Density, Bone Structure and Functionality in Institutionalized Elderly.
Study Start Date : January 2012
Actual Primary Completion Date : February 2014
Actual Study Completion Date : February 2014

Resource links provided by the National Library of Medicine

MedlinePlus related topics: Bone Density
U.S. FDA Resources

Arm Intervention/treatment
No Intervention: Control group
There will be no participation in a training program. The control group will perform all measurements.
Experimental: Intervention group
The subjects of the vibration group will be subjected to local vibration training by the use of custom-made cylindrical vibrators. These subjects will perform all measurements.
Other: Local Vibration
The subjects of the vibration group will be subjected to local vibration training by the use of custom-made cylindrical vibrators which will be placed on the hip and thigh. The subjects will apply the vibrations by themselves and they will learn how to follow the pre-programmed training program. Training sessions take place 5 times a week, during one year. The physiotherapist and the research assistant will attend the training session 1x/week. Training parameters will vary during the year to create a variable stimulus (frequency 40-80Hz and G-force 0.5-5g). The intervention group will perform all measurements.
Other Name: Local vibration of muscle and bone

Primary Outcome Measures :
  1. Bone mineral density hip (change in bone mineral density hip) [ Time Frame: baseline and after 6 months ]
    Bone mineral density of the total hip will be determined by dual - energy x - ray absorptiometry (Hologic, Waltham, MA, USA).

Secondary Outcome Measures :
  1. Functionality (change in functionality) [ Time Frame: baseline and 6 months ]
    Functionality will be determined by the modified Physical Performance Test (mPPT). Additionally, the number of falls during the study period and their circumstances will be identified using Fall calendars.

  2. Physical performance (change in physical performance) [ Time Frame: baseline and 6 months ]
    Physical performance will be assessed by the "shuttle walk test" which is a standardized incremental field walking test that provokes a symptom limited maximal performance

  3. Muscle mass (change in muscle mass) [ Time Frame: baseline and 6 months ]
    Muscle mass of the upper leg will be determined by a multislice CT-scan (Siemens Sensation 16) which delivers axial slices of the right upper leg. The midpoint between the medial edge of the greater trochanter and the intercondyloid fossa of the patella was determined, and subsequently a 2 mm-thick axial image (1 mm above and 1 mm below this midpoint) was further analyzed. This procedure was repeated 3 cm above and 3 cm below the midpoint. Muscle tissue area was segmented by using standard Hounsfield Units ranges for skeletal muscle (0-100).

  4. Muscle strength and muscle power (change in muscle strength and power) [ Time Frame: baseline and 6 months ]
    Muscle strength and muscle power of the knee extensors will be measured on an isokinetic dynamometer. Static and dynamic muscle strength will be recorded unilaterally on the Biodex Medical System 3 dynamometer. A standard protocol will be performed twice: isometric strength (120 °, 90° en 30°), isotonic strength with 40%, 20% and 1% of the isometric maximum and isokinetic strength by 60°/s, 180°/s en 240°/s.

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Ages Eligible for Study:   65 Years and older   (Adult, Senior)
Sexes Eligible for Study:   Female
Accepts Healthy Volunteers:   Yes

Inclusion Criteria:

  • Female;
  • Above 65 years of age;
  • Institutionalized in a nursing home, service flat or cloistered community;
  • Not on bone-active agents;
  • Approval for participation in the study after a medical screening by a doctor. The general practitioner will also be contacted for approving the participation of the patient;
  • Signed informed consent.

Exclusion Criteria:

  • Musculoskeletal disease;
  • Terminal illness, recent myocardial infarction or unstable cardiovascular conditions;
  • Participation in resistance training during the past 24 months;
  • Metallic implants (e.g. prothesis);

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT01499186

Faculty of Kinesiology and Rehabilitation Sciences
Leuven, Vlaams Brabant, Belgium, 3000
Sponsors and Collaborators
Universitaire Ziekenhuizen Leuven
Principal Investigator: Sabine Verschueren, PhD, Prof Katholieke Universiteit Leuven

Publications automatically indexed to this study by Identifier (NCT Number):
Responsible Party: Universitaire Ziekenhuizen Leuven Identifier: NCT01499186     History of Changes
Other Study ID Numbers: ML7837
First Posted: December 26, 2011    Key Record Dates
Last Update Posted: March 18, 2014
Last Verified: December 2013

Keywords provided by Universitaire Ziekenhuizen Leuven:
Local vibration, elderly, bone, muscle, functionality

Additional relevant MeSH terms:
Bone Diseases, Metabolic
Bone Diseases
Musculoskeletal Diseases
Metabolic Diseases
Muscular Atrophy
Neuromuscular Manifestations
Neurologic Manifestations
Nervous System Diseases
Pathological Conditions, Anatomical
Signs and Symptoms