Change in Peripheral Oxygen Saturation by Using Different Breathing Procedures in High Altitude
![]() |
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. |
ClinicalTrials.gov Identifier: NCT01468194 |
Recruitment Status
:
Completed
First Posted
: November 9, 2011
Last Update Posted
: November 9, 2011
|
- Study Details
- Tabular View
- No Results Posted
- Disclaimer
- How to Read a Study Record
Condition or disease | Intervention/treatment | Phase |
---|---|---|
Acute Mountain Sickness | Other: Breathing procedure 1 Other: Breathing procedure 2 | Not Applicable |
Acute mountain sickness (AMS) is a pathological effect of high altitude on humans caused by acute exposure to low partial pressure of oxygen at high altitude. It commonly occurs above 2500 meters of altitude. AMS appears as a collection of nonspecific symptoms acquired at high altitude or in low air pressure resembling a case of "flu, carbon monoxide poisoning, or a hangover".
It is caused by a drop in pressure and lowering partial pressure of oxygen during increasing altitude. The direct consequence of those changes is a hypoxic pulmonary vasoconstriction (Euler-Lijestrand-mechanism). In addition a rise in pulmonary blood pressure (Hypertonia) can occur so that there is a higher risk of developing a high altitude pulmonary edema (HAPE).
In this investigation the investigators are exploring whether different types of breathing procedures can improve the peripheral oxygen saturation. We are comparing breathing with no regulation with two different procedures of hyperventilation during trekking in different altitudes. Procedure 1 (hyperventilation 1) describes inhalation during one step and exhalation during the next step. Procedure 2 (hyperventilation 2) describes inhalation and exhalation during one step.
The effect of the different breathing procedures can be quantified measuring the peripheral oxygen saturation. In addition the investigators are comparing the breathing rate and the minute ventilation as well as the expiratory end-tidal CO2-partial pressure of the three different breathing procedures.
Furthermore, the investigators are examining the ability to concentrate in order to quantify the effect of AMS on organ functions.
Study Type : | Interventional (Clinical Trial) |
Estimated Enrollment : | 30 participants |
Allocation: | Non-Randomized |
Intervention Model: | Single Group Assignment |
Masking: | Single (Outcomes Assessor) |
Primary Purpose: | Prevention |
Study Start Date : | July 2011 |
Actual Primary Completion Date : | October 2011 |
Actual Study Completion Date : | November 2011 |

Arm | Intervention/treatment |
---|---|
Experimental: Breathing procedure 1
Walking with breathing procedure "1".
|
Other: Breathing procedure 1
inhalation during one step, exhalation during the next step
|
Experimental: Breathing procedure 2
Walking with breathing procedure "2".
|
Other: Breathing procedure 2
inhalation and exhalation during one step
|
No Intervention: Control group
Walking without any reglementation of breathing
|
- change of peripheral oxygen saturation [ Time Frame: immediate after intervention ]change of peripheral oxygen saturation under different breathing procedures in different altitudes
- change of breathing parameters [ Time Frame: immediate after intervention ]
change of breathing parameters under different breathing procedures in different altitudes
- breathing rate
- minute ventilation
- expiratory end-tidal CO2-partial pressure
- change of cognition [ Time Frame: immediate after intervention ]change of ability of cognition (measured by d2-test) under different breathing procedures in different altitudes

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.
Ages Eligible for Study: | 18 Years and older (Adult, Senior) |
Sexes Eligible for Study: | All |
Accepts Healthy Volunteers: | Yes |
Exclusion Criteria:
- acute clinically significant inter-current diseases

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.
Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT01468194
Germany | |
University of Giessen | |
Giessen, Hessen, Germany, 35394 |
Principal Investigator: | Gabor Szalay, Dr. med. | Trauma surgery - University hospital Giessen |
Responsible Party: | Andree Hillebrecht, Akademischer Rat, University of Giessen |
ClinicalTrials.gov Identifier: | NCT01468194 History of Changes |
Other Study ID Numbers: |
Gi-04-2011 |
First Posted: | November 9, 2011 Key Record Dates |
Last Update Posted: | November 9, 2011 |
Last Verified: | November 2011 |
Keywords provided by Andree Hillebrecht, University of Giessen:
AMS HAPE high altitude oxygen |
saturation mountain climbing breathing |
Additional relevant MeSH terms:
Altitude Sickness Respiration Disorders Respiratory Tract Diseases |