Neuroprotection With Phenytoin in Optic Neuritis
![]() |
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. |
ClinicalTrials.gov Identifier: NCT01451593 |
Recruitment Status :
Completed
First Posted : October 13, 2011
Last Update Posted : September 9, 2015
|
- Study Details
- Tabular View
- No Results Posted
- Disclaimer
- How to Read a Study Record
Optic neuritis is caused by inflammation of the optic nerve and causes loss of vision in the affected eye. It is often associated with multiple sclerosis. Loss of vision after an attack of optic neuritis is caused by damage to the nerve fibres in the optic nerve. There are a number of factors that contribute to nerve fibre damage including increased levels of sodium within them, so blocking sodium entry could help to protect them against damage.
The purpose of this study is determine whether phenytoin (which blocks sodium entry into cells) can protect against loss of nerve fibres and prevent loss of vision after optic neuritis.
Condition or disease | Intervention/treatment | Phase |
---|---|---|
Optic Neuritis Multiple Sclerosis | Drug: Phenytoin Drug: Placebo | Phase 2 |
Demyelinating optic neuritis is the most common cause of acute reversible visual loss in young adults of Northern European Origin. There is a strong association with multiple sclerosis and up to 75% of British adults with acute clinically isolated optic neuritis go on to develop MS during long term follow up. Equally, 70% of MS patients have clinical evidence if optic nerve involvement during the course of their illness.
The pathology of the acute inflammatory lesion is comparable to the plaques found elsewhere in the CNS in MS. The retina and optic nerve therefore represent a discrete compartment of the CNS affected by the disease process that can be easily studied using a combination of clinical, electrophysiological and imaging techniques.
There is good evidence that axonal and neuronal degeneration are the primary pathological processes leading to irreversible disability in MS. Experimental models have demonstrated numerous mechanisms of axonal loss including adaptive changes in the demyelinated axonal membrane, in particular increased density of sodium channels leading to increased concentrations of intraaxonal sodium ions. Partial blockade of voltage gated sodium channels with drugs such as phenytoin has been shown to be neuroprotective in several experimental models of inflammatory axonal injury.
The retinal nerve fibre layer is unique in the CNS in that it is not myelinated and therefore is an ideal biomarker for the processes of neurodegeneration and neuroprotection.
Imaging of the retinal nerve fibre layer using optical coherence tomography and of the optic nerve using MRI both demonstrate that acute optic neuritis is associated with significant volume loss, and this correlates well with impaired visual function.
The primary aim of this trial is to assess whether sodium channel blockade with phenytoin has a neuroprotective effect on axonal loss after an attack of acute demyelinating optic neuritis. Secondary aims are to assess whether phenytoin improves visual outcome and remyelination and to assess the safety of the treatment.
90 patients with acute optic neuritis will be recruited into a double blind placebo controlled trial in which patients will be randomly allocated to receive either phenytoin or placebo for 3 months. Recruitment will take place at two trial sites in Sheffield and London. The trial is powered to detect a 50% beneficial effect on the primary outcome measure. Outcome will be measured at entry and after 6 months.Bias will be minimized by blinding assessing physicians and patients using active and placebo treatment of identical appearance.
Study Type : | Interventional (Clinical Trial) |
Actual Enrollment : | 92 participants |
Allocation: | Randomized |
Intervention Model: | Parallel Assignment |
Masking: | Triple (Participant, Investigator, Outcomes Assessor) |
Primary Purpose: | Treatment |
Official Title: | A Phase II Double Blind, Randomized, Placebo Controlled Trial of Neuroprotection With Phenytoin in Acute Optic Neuritis |
Study Start Date : | November 2011 |
Actual Primary Completion Date : | December 2014 |
Actual Study Completion Date : | March 2015 |

Arm | Intervention/treatment |
---|---|
Experimental: phenytoin
active arm of trial 1:1 allocation active versus placebo
|
Drug: Phenytoin
Phenytoin will be loaded using at total dose of 15mg/kg (rounded to the nearest 100mg) divided into three equal doses given once daily for 3 days.This will be followed by a daily maintenance dose of 4mg/kg once a day (rounded up to the nearest 50mg, with a maximum dose of 300mg)for 13 weeks.Phenytoin levels will be taken at 1 and 3 months.
Other Names:
|
Placebo Comparator: placebo
1:1 allocation active versus placebo
|
Drug: Placebo
placebo identical in appearance to active IMP (phenytoin) |
- Mean Retinal nerve fibre layer thickness [ Time Frame: Measured at entry and after 6 months ]The primary comparison will estimate active versus placebo mean retinal nerve fibre layer thickness of the retinal nerve fibre layer after 6 months, adjusted for the corresponding baseline measurement in the unaffected eye.
- Visual function [ Time Frame: Measured at entry and 6 months ]logMAR visual acuity, low contrast sensitvity using 1.25% and 2.5% sloan charts and colour vision using Farnsworth-Munsell 100 Hue test.
- Visual evoked potentials [ Time Frame: Measured at entry (or within 4 weeks) and after 6 months ]Measurement of latency and amplitude will be performed. Axonal protection with phenytoin may enable axons to survive long enough to undergo remyelination. VEPS will give independent estimates of remyelination in the optic nerve.
- Optic nerve and brain MRI [ Time Frame: Brain MRI will be performed at entry(or within 4 weeks) Optic nerve MRI will be performed at entry (or within 4 weeks) and after 6 months ]
Brain MRI to detect demyelinating lesions that can be used in considering the prognosis for or diagnosis of multiple sclerosis using McDonald criteria.
Optic nerve MRI - The following sequences will be performed:
- Fat sat T2 coronal-oblique to visualize the symptomatic lesion and obtain optic nerve area measurements.
- 3D gradient echo magnetization transfer sequence MTR to obtain measures of optic nerve myelination.
- Diffusion tensor imaging to obtain axial and radial diffusivity metrics of the optic nerve to determine axonal integrity.

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.
Ages Eligible for Study: | 18 Years to 60 Years (Adult) |
Sexes Eligible for Study: | All |
Accepts Healthy Volunteers: | No |
Inclusion Criteria:
- Diagnosis of acute optic neuritis
- Visual acuity in affected eye ≤ 6/12
- Corrected vision in normal eye ≥ 6/6
- No history of optic neuritis or other ocular disease in either eye
- ≤ 14 days since onset of visual loss
Exclusion Criteria:
- Contraindication or known allergy to Phenytoin
- Contraindication to MRI
- Use of a calcium channel or sodium channel blocker in the past 2 months
- Corticosteroid use in the past 2 months
- Tysabri infusion in the past 3 months
- MS with major temperature dependent disability
- Relapsing remitting MS of greater than 10 yrs duration or EDSS>3
- Pregnancy
- Breast Feeding
- Significant cardiac, renal or liver abnormalities

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.
Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT01451593
United Kingdom | |
National Hospital for Neurology and Neurosurgery | |
London, United Kingdom, WC1 3BG | |
Royal Hallamshire Hospital | |
Sheffield, United Kingdom |
Principal Investigator: | Raju Kapoor, DM FRCP | Institute of Neurology, University College London |
Responsible Party: | University College, London |
ClinicalTrials.gov Identifier: | NCT01451593 |
Other Study ID Numbers: |
UCL/11/0083 |
First Posted: | October 13, 2011 Key Record Dates |
Last Update Posted: | September 9, 2015 |
Last Verified: | September 2015 |
Optic neuritis Multiple sclerosis Retinal nerve fibre layer Axonal loss Neuroprotection |
Phenytoin MRI Optical coherence tomography Sodium Channel Blockers |
Neuritis Optic Neuritis Optic Nerve Diseases Eye Diseases Phenytoin Multiple Sclerosis Sclerosis Pathologic Processes Demyelinating Autoimmune Diseases, CNS Autoimmune Diseases of the Nervous System Nervous System Diseases Demyelinating Diseases |
Autoimmune Diseases Immune System Diseases Peripheral Nervous System Diseases Neuromuscular Diseases Cranial Nerve Diseases Anticonvulsants Voltage-Gated Sodium Channel Blockers Sodium Channel Blockers Membrane Transport Modulators Molecular Mechanisms of Pharmacological Action Cytochrome P-450 CYP1A2 Inducers Cytochrome P-450 Enzyme Inducers |