Hepatic and Renal Thermography Using Magnetic Resonance Imaging (THeR-IRM)

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. Identifier: NCT01197820
Recruitment Status : Terminated
First Posted : September 9, 2010
Last Update Posted : June 14, 2012
Information provided by (Responsible Party):
University Hospital, Bordeaux

Brief Summary:
Several technological challenges exist to apply Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) for treatment of liver or kidney in particular challenges related to the motion of these organs. This study tests a new software to improve thermometry accuracy in mobile organs in patients with liver or kidney tumors. In the same time, the trajectory of the target in 3D is analyzed.

Condition or disease Intervention/treatment Phase
Liver Tumors Kidney Carcinoma Device: MRI Not Applicable

Detailed Description:

Liver and kidney tumors represent a major health problem because most patients are unsuitable for curative treatment with surgery. Thus, percutaneous ablation, using radio frequency (RF), is preferred : an interstitial electrode that delivers alternative current is placed into the tissue. Consequently, the development of an accurate and completely non-invasive method based on MR guided HIFU treatment is of particular interest since the energy source is located outside the body. There is no incision. For the patient, it provides a treatment option with reduced trauma and improved quality of life, and for the society, it provides reduced hospitalization time and reduced costs.

MRgHIFU has already been tested clinically in tumors of immobilized tissues as uterine leiomyoma. However, several technological challenges exist to apply it for treatment of the liver or the kidney especially challenges related to the motions of these organs. In order to improve the therapeutic efficiency and the safety of the intervention, real time mapping of temperature and thermal dose appear to offer the best strategy to optimize such interventions and provide clinical therapy endpoints. Among imaging modalities, MRI Proton Resonance Frequency based method appears to be the ideal tool for temperature mapping.

One major drawback of PRF thermometry is its high sensitivity to motion. Therefore motion correction is necessary to use PRF thermometry in mobile organs such as the liver or kidneys. To correct artefacts generated in temperature maps by periodical organ motion, a new technique was developed in the IMF lab of Bordeaux University Hospital.

The primary outcome of this study is to evaluate the precision of multiplanar MR imaging with real time motion compensation in hepatic or renal tumour patient.

Secondary outcomes are :

  • Characterization of 3d movements of the tumour and test if imaging is improved when the imaging plan contains the main axis of movement.
  • Ballistic: we need to identify all anatomical structures which are in the way of the HIFU beam in order to define the types of tumour suitable for future treatments
  • Another outcome is to define what modifications are needed in order to treat patients such as depth of treatment, power level. We also need to see the target, ribs, and the transducer in order to evaluate the number of transducer elements to be turned off during treatment.

Study Type : Interventional  (Clinical Trial)
Actual Enrollment : 15 participants
Allocation: Non-Randomized
Intervention Model: Single Group Assignment
Masking: None (Open Label)
Primary Purpose: Basic Science
Official Title: Hepatic and Renal Thermography Using Magnetic Resonance Imaging
Study Start Date : September 2010
Actual Primary Completion Date : May 2011
Actual Study Completion Date : May 2011

Resource links provided by the National Library of Medicine

Arm Intervention/treatment
Experimental: Arm 1
30 patients with liver tumour and 15 patients with kidney tumour will be enrolled.
Device: MRI

Patients will have a regular hepatic or kidney MRI investigation; we will add our sequences on their initial protocol. At first, one thermometry sequence is performed before angular correction is achieved with the following parameters: FOV=300 mm, matrix=96*96, TE/TR=18/72 ms, 67 lines/TR, Sense factor=1.4, 5 slices (4 coronal et 1 sagittal), 30° Flip angle.

In order to determine the main direction of motion, a set of 200 images are acquired during motion with two interleaved orthogonal slices (one coronal and one sagittal) centered on the region of interest, with the read out direction aligned with the head-feet direction. True-fisp images are acquired during 40 seconds with the following parameters: FOV=400 mm, matrix=128*109, TE/TR=1.2/2.43 ms, 60° flip angle, and 6 mm slice thickness.

Then the tested software proposes an angular correction to minimize out of plane motion. For each set of orientations, MR thermometry is performed

Primary Outcome Measures :
  1. Temperature standard deviation [ Time Frame: Duration of MRI specific sequence (15 min) ]
    To test the ability of this method to improve thermometry accuracy, temperature standard deviations will be studied. Indeed, temperature standard deviations reflect thermometry inaccuracy in absence of temperature variations. Temperature standard deviation in each pixel will be measured over a temporal window. Two regions of interest (ROI) determined by the operator will be considered: the first one in the tumor, the second one for the whole organ.

Secondary Outcome Measures :
  1. Characterization of tumor motion in 3D during respiratory cycles [ Time Frame: Duration of MRI specific sequence (15 min) ]

    To characterize tumor motion in the 3 dimensions during respiratory cycles :

    To study the ability of this approach to determinate the 3D trajectory of a target, motion projections on three orthogonal axes will be analyzed from the MRI two orthogonal slices. If the motion can be assimilated to a rectilinear displacement, there will be amplitude minimization after angular correction.

  2. Improve of MRgHIFU shooting ballistics: [ Time Frame: Duration of MRI specific sequence (15 min) ]
    we need to see all anatomical structures in the path of the HIFU cone. Depth of the tumour, number of ribs in the pathway, presence of sensitive organ in the pathway or in PTV vicinity will be recorded

  3. HIFU platform improvements [ Time Frame: Duration of MRI specific sequence (15 min) ]
    To define what improvements are needed on the HIFU platform in order to enhance its therapeutical abilities (depth of treatment, power level…) Amount of transducer's elements masked by rib's shadow, calculation of power level required for treatment, required number of HIFU transducer elements to be turn-off will be calculated.

Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.

Ages Eligible for Study:   18 Years and older   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   No

Inclusion Criteria:

  • Liver tumors treated or not : HCC, liver metastases of colorectal cancer, hepatocellular adenoma, focal and nodular hyperplasia,
  • Kidney tumors : carcinoma
  • more than 18 years old

Exclusion Criteria:

  • Tumours of the liver dome
  • Deprived of their liberty by court
  • Pregnant woman
  • Contraindication to MRI examination
  • Contraindication to including gadolinium salts injection

Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its identifier (NCT number): NCT01197820

Service de radiologie - Hôpital PELLEGRIN - CHU de Bordeaux
Bordeaux, France, 33000
Service of medical Imaging St André Hospital - CHU de BORDEAUX
Bordeaux, France, 33075
Sponsors and Collaborators
University Hospital, Bordeaux
Principal Investigator: Hervé TRILLAUD, Pr CHU Bordeaux

Responsible Party: University Hospital, Bordeaux Identifier: NCT01197820     History of Changes
Other Study ID Numbers: CHUBX 2010/11
First Posted: September 9, 2010    Key Record Dates
Last Update Posted: June 14, 2012
Last Verified: June 2012

Keywords provided by University Hospital, Bordeaux:
mobile organs
Liver tumors, kidney carcinoma

Additional relevant MeSH terms:
Liver Neoplasms
Carcinoma, Renal Cell
Kidney Neoplasms
Digestive System Neoplasms
Neoplasms by Site
Digestive System Diseases
Liver Diseases
Neoplasms, Glandular and Epithelial
Neoplasms by Histologic Type
Urologic Neoplasms
Urogenital Neoplasms
Kidney Diseases
Urologic Diseases