The Role of TBX3 in Human ES Cell Differentiation
![]() |
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. |
ClinicalTrials.gov Identifier: NCT00581152 |
Recruitment Status :
Withdrawn
(IRB suspension)
First Posted : December 27, 2007
Last Update Posted : January 25, 2021
|
- Study Details
- Tabular View
- No Results Posted
- Disclaimer
- How to Read a Study Record
Stem cells can develop into every cell, every tissue and every organ in the human body, e.g., they can make any kind of cells in the human body. Stem cells reproduce themselves many times over and over. Their almost limitless potential has made stem cells a significant focus of medical research. But before scientists can use stem cells for medical purposes, they must first learn how to harness their power. They cannot treat disease until they learn how to manipulate stem cells to get them to develop into specific tissues or organs.
We know that turning genes on and off is crucial to the process differentiation, so we can add some factor into the culture dish and observe stem cells to differentiate into specific types of cells. But some sort of signal is needed to actually trigger the stem cells to differentiate. We are still searching for that signal. If we can ultimately learn how to direct stem cells to differentiate into one type of tissue or another, then we can use them to treat patients. In this proposal, we will first examine this step.
We propose a novel approach to understanding differentiation of human embryo stem (hES) cells, by studying TBX3, a protein called a transcription factor that controls the expression of other genes. In humans, the loss of function of TBX3 causes Ulnar-Mammary Syndrome, a genetic disorder that can pass from one generation to the next. Furthermore, our preliminary results show that TBX3 is downstream mediator of another protein, BMP4. BMP4 is a known key regulator for hES cell differentiation. Thus, TBX3 is an attractive candidate as a downstream mediator of BMP4 in hES cell differentiation. We will test TBX3 effects on hES cell differentiation if down-regulate TBX3 in hES cells with a technology called siRNA knockdown. We will identify the genes controlled by TBX3 with a recently invented powerful technology called CHIP-GLAS. This technique allows us to examine thousands of genes on a small chip in a single experiment. We expect that the innovative experiments proposed here will open a new avenue to understanding the signal of hES cell differentiation.
Condition or disease |
---|
TBX3 Cell Differentiation |

Study Type : | Observational |
Actual Enrollment : | 0 participants |
Observational Model: | Case-Only |
Time Perspective: | Other |
Official Title: | The Role of TBX3 in Human ES Cell Differentiation |
Study Start Date : | August 2007 |
Actual Primary Completion Date : | August 28, 2010 |
Actual Study Completion Date : | August 28, 2010 |
- The cell morphology and biochemical changes will be examined for the effects of TBX3 knockdown on hES cell differentiation, including testing human ß-CG estradiol and progesterone. [ Time Frame: 3 years ]
- To identify the targets of TBX3 in BMP4-induced hES cells, we will perform ChIP-GLAS analysis. CHIP-GLAS will allow us to identify the genome-wide downstream target genes directly bound by TBX3 in hES cells. [ Time Frame: 3 years ]
Biospecimen Retention: Samples With DNA

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.
Ages Eligible for Study: | Child, Adult, Older Adult |
Sexes Eligible for Study: | All |
Accepts Healthy Volunteers: | No |
Sampling Method: | Non-Probability Sample |
Inclusion Criteria:
- none
Exclusion Criteria:
- none
Responsible Party: | University of California, Irvine |
ClinicalTrials.gov Identifier: | NCT00581152 |
Other Study ID Numbers: |
OCRT07015 [HS# 2007-5848] HS# 2007-5848 |
First Posted: | December 27, 2007 Key Record Dates |
Last Update Posted: | January 25, 2021 |
Last Verified: | January 2021 |
TBX3 |