Don't get left behind! The modernized ClinicalTrials.gov is coming. Check it out now.
Say goodbye to ClinicalTrials.gov!
The new site is coming soon - go to the modernized ClinicalTrials.gov
Working…
ClinicalTrials.gov
ClinicalTrials.gov Menu

Role of p53 Gene in Metabolism Regulation in Patients With Li-Fraumeni Syndrome

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.
 
ClinicalTrials.gov Identifier: NCT00406445
Recruitment Status : Completed
First Posted : December 4, 2006
Last Update Posted : November 22, 2021
Sponsor:
Information provided by (Responsible Party):
National Institutes of Health Clinical Center (CC) ( National Heart, Lung, and Blood Institute (NHLBI) )

Brief Summary:

This study will examine metabolic and biological factors in people with Li-Fraumeni syndrome, a rare hereditary disorder that greatly increases a person's susceptibility to cancer. Patients have a mutation in the p53 tumor suppressor gene, which normally helps control cell growth. This gene may control metabolism as well as cancer susceptibility, and the study findings may help improve our understanding of not only cancer but also other conditions, such as cardiovascular function.

Healthy normal volunteers and patients with the Li-Fraumeni syndrome and their family members may be eligible for this study. Candidates must be at least 18 years of age, in overall good health and cancer-free within 1 year of entering the study. Participants undergo the following procedures:

  • Blood tests for routine lab values and for research purposes.
  • ECG and echocardiogram (heart ultrasound) to evaluate heart structure and function.
  • Resting and exercise metabolic stress testing: The subject first relaxes in a chair wearing the facemask and then exercises on a stationary bicycle or treadmill while wearing the mask. This test uses the facemask to measure oxygen usage by the body to determine metabolic fitness. Electrodes are placed on the body to monitor the heart in an identical manner to a standard exercise stress test.
  • Magnetic resonance imaging of metabolism: The subject lies on a bed that slides into a large magnet (the MRI scanner) for up to 60 minutes. During scanning, the arm or leg muscles are stressed by inflating a blood pressure cuff and by exercising the limb for several minutes. Subjects may be asked to squeeze a rubber ball or exercise with a foot pedal. Immediately afterwards, the pressure in the cuff is released and remains deflated for 10 to 15 minutes. No more than three 5-minute episodes of blood flow stoppage are performed.
  • Standard MRI scan of exercised limb to determine muscle volume.
  • Brachial artery reactivity test to measure blood vessel function: Before the exercise stress testing, subjects lie on a stretcher while the brachial artery (artery in the forearm) is imaged using a noninvasive ultrasound method. Artery size and blood flow velocity are measured before and after inflating a blood pressure cuff on the forearm. Vessel size and flow velocity measurements are repeated after 15 minutes and again after administration of nitroglycerin under the tongue.
  • Oral glucose tolerance testing to test for diabetes: To assess sugar metabolism, subjects drink a sugar solution. Blood samples are collected before drinking the solution and 1 and 2 hours after drinking the solution.
  • Muscle biopsy (optional according to subject preference): Subjects may be given small amounts of sedation for the procedure. A small area of skin over a leg muscle is numbed and a small amount of muscle tissue is surgically removed.

Condition or disease
Mitochondrial Disorders Li-Fraumeni Syndrome Carriers of p53 Mutation

Detailed Description:

We have previously reported that TP53 (encoding p53 protein), one of the most frequently mutated genes in human cancers, dose dependently modulates the balance between the utilization of oxidative and glycolytic pathways for energy generation in human colon cancer cells and mouse liver mitochondria. Though morphologically similar to their wild-type littermates, mice deficient in p53 display a gene dose-dependent decrease in aerobic exercise capacity, implying that p53 has functions beyond its well characterized cell cycle activities. These current findings have broad implications in fields ranging from cancer and aging research to cardiovascular physiology.

In the Li-Fraumeni familial cancer syndrome (LFS), affected individuals harbor a germline mutation in TP53, hence they are heterozygous with reduced wild-type p53 activity. We hypothesize that the heterozygous individuals will display alterations in aerobic capacity and metabolism that previously has been unappreciated. This IRB proposal translates our experimental observation to human subjects in collaboration with extramural groups studying this rare familial syndrome. The results may not only help clarify why mutations of p53 gene are so common in cancers by potentially conferring metabolic advantages in tumorigenesis, but they may also give us an opportunity to understand a fundamental regulatory mechanism in cellular energy generation relevant to other processes.

Layout table for study information
Study Type : Observational
Actual Enrollment : 82 participants
Observational Model: Case-Control
Time Perspective: Prospective
Official Title: Metabolic Regulation by Tumor Suppressor p53 in Li-Fraumeni Syndrome
Actual Study Start Date : January 23, 2007
Actual Primary Completion Date : March 22, 2021
Actual Study Completion Date : March 22, 2021


Group/Cohort
carrier LFS family members
96 carrier LFS family members
non-carrier LFS family members or normal
60 non-carrier LFS family members or normal
non-carrier mitochondrial disorder family members or normal controls
20 non-carrier mitochondrial disorder family members or normal controls
normal controls for MR spectroscopy study
30 normal controls for MR spectroscopy study
subjects with mitochondrial disorders
20 subjects with mitochondrial disorders



Primary Outcome Measures :
  1. Non-invasively measure aerobic exercise capacity and metabolism [ Time Frame: ongoing ]
    Because an interim analysis has confirmed our hypothesis, the aim of the primary endpoint has been achieved.


Secondary Outcome Measures :
  1. Non-invasively measure markers of mitochondrial function by magneticresonance spectroscopy (MRS) in response to transient ischemic stress [ Time Frame: ongoing ]
    This will serve to facilitate bench-to-bedside studies to investigate metabolic and other associated changes in LFS with the goal of deriving mechanistic insights that may lead to new strategies forcancer prevention.

  2. Measure oxygen consumption, protein and RNA levels of p53-regulated mitochondrial genes using blood cells and other tissue samples if available. [ Time Frame: ongoing ]
    This will serve to facilitate bench-to-bedside studies to investigate metabolic and other associated changes in LFS with the goal of deriving mechanistic insights that may lead to new strategies forcancer prevention.



Information from the National Library of Medicine

Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.


Layout table for eligibility information
Ages Eligible for Study:   18 Years to 100 Years   (Adult, Older Adult)
Sexes Eligible for Study:   All
Accepts Healthy Volunteers:   Yes
Sampling Method:   Non-Probability Sample
Study Population
96 carrier LFS family members 60 non-carrier LFS family members or normal 30 normal controls for MR spectroscopy study 20 subjects with mitochondrial disorders 20 non-carrier mitochondrial disorder family members or normal controls
Criteria
  • INCLUSION CRITERIA:

    1. At least 18 years of age and able to give informed consent
    2. In overall good physical and mental health;
    3. Able to exercise on a treadmill (if participating in the treadmill exercise portion).
    4. Able to perform hand or leg exercises (if participating in the MRS portion)

Able to undserstand and sign consent

Have been diagnosed with the Li-Fraumeni Syndrome or have a family member with the Li-Fraumeni Syndrome or have been diagnosed with mitochondrial disorder or be a healthy volunteer

EXCLUSION CRITERIA:

Cancer patients undergoing or requiring systemic treatment


Information from the National Library of Medicine

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.

Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT00406445


Locations
Layout table for location information
United States, Maryland
National Institutes of Health Clinical Center, 9000 Rockville Pike
Bethesda, Maryland, United States, 20892
Sponsors and Collaborators
National Heart, Lung, and Blood Institute (NHLBI)
Investigators
Layout table for investigator information
Principal Investigator: Paul M Hwang, M.D. National Heart, Lung, and Blood Institute (NHLBI)
Additional Information:
Publications:
Publications automatically indexed to this study by ClinicalTrials.gov Identifier (NCT Number):
Layout table for additonal information
Responsible Party: National Heart, Lung, and Blood Institute (NHLBI)
ClinicalTrials.gov Identifier: NCT00406445    
Other Study ID Numbers: 070030
07-H-0030
First Posted: December 4, 2006    Key Record Dates
Last Update Posted: November 22, 2021
Last Verified: November 2021

Layout table for additional information
Studies a U.S. FDA-regulated Drug Product: No
Studies a U.S. FDA-regulated Device Product: No
Keywords provided by National Institutes of Health Clinical Center (CC) ( National Heart, Lung, and Blood Institute (NHLBI) ):
p53 Mutation
Li-Fraumeni Syndrome
Aerobic Metabolism
Magnetic Resonance Spectroscopy
Additional relevant MeSH terms:
Layout table for MeSH terms
Li-Fraumeni Syndrome
Mitochondrial Diseases
Syndrome
Disease
Pathologic Processes
Neoplastic Syndromes, Hereditary
Neoplasms
Genetic Diseases, Inborn
DNA Repair-Deficiency Disorders
Metabolic Diseases