Application of Genetic Polymorphisms of DNA Repair in The Prediction of Prostate Cancer Susceptibility and Its Clinical Outcome
![]() |
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details. |
ClinicalTrials.gov Identifier: NCT00167024 |
Recruitment Status
: Unknown
Verified March 2005 by National Taiwan University Hospital.
Recruitment status was: Recruiting
First Posted
: September 14, 2005
Last Update Posted
: November 28, 2005
|
- Study Details
- Tabular View
- No Results Posted
- Disclaimer
- How to Read a Study Record
Condition or disease |
---|
Prostate Cancer |
DNA repair plays a key role in carcinogenesis through the removal and repair of DNA damage induced by endogenous and environmental sources. The DNA repair system included four pathways: 1) Base Excision Repair (BER), 2) Nucleotide Excision Repair (NER), 3) Mismatch Repair (MMR) and 4) Double-Strand Break Repair, including homologous recombination pathway and nonhomologous end-joining repair pathway. Decreased and impaired DNA repair capacity has been reported in various cancers, however, its effect on prostate cancer still under investigated.
Common polymorphisms in DNA repair gene may alter protein function and individual’s capacity to repair damaged DNA, hence, influence the cancer susceptibility. Polymorphic variants of DNA repair gene have been found to be associated with cancer susceptibility, but rare studies have investigated their effect on prostate cancer. Since variation in the function of these DNA repair genes also impact a cancer cell’s viability or resistance to treatment, genetic variants in DNA repair might serve as a valuable biomarker in forcasting the result of cancer treatment. In fact, some reports have demonstrated the association between polymorphisms of DNA repair genes and results of treatment of various cancers.
For the present study proposal, we focused on several DNA repair genes: X-ray repair cross- complementing group 1 (XRCC1), human oxoguanine glycosylase I (hOGG1), xeroderma pigmentosum complementation group D (XPD), hMSH2, hMLH1 and X-ray repair cross-complementing group 3 (XRCC3), which might have relevance in prostate carcinogenesis based on their known functions. XRCC1 is involved in DNA repair in the base excision pathway, the hOGG1 gene encodes a DNA glycosylase /apurinic-apyrimidinic lyase that catalyzes the excision and removal the 8-OH-dG (8-hydroxy- 2-deoxyguanine) - which is a major form of oxidative DNA damage. The XPD gene codes for a DNA helicase involved in transcription and nucleotide excision repair. The hMSH2 and hMLH1 are genes involved with mismatch repair. The XRCC3 gene encoded a protein in the double-strand break homologous recombinational repair pathways.
In this proposed study, we will also use PCR-based methods to investigate the effects of DNA repair gene polymorphisms on prostate cancer susceptibility, pathological grade, disease stage and clinical outcome. With these efforts, we will further understand the association between DNA repair gene polymorphism and prostate cancer and provided important information for screening, prevention and treatment of prostate cancer.
Study Type : | Observational |
Enrollment : | 100 participants |
Observational Model: | Defined Population |
Primary Purpose: | Screening |
Time Perspective: | Longitudinal |
Time Perspective: | Retrospective/Prospective |
Study Start Date : | March 2005 |


Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the contacts provided below. For general information, Learn About Clinical Studies.
Ages Eligible for Study: | Child, Adult, Senior |
Sexes Eligible for Study: | Male |
Accepts Healthy Volunteers: | No |
Inclusion Criteria:
- prostate cancer approved by pathology
Exclusion Criteria:
- combined with other malignancy
- accepting blood transfusion within 6 months

To learn more about this study, you or your doctor may contact the study research staff using the contact information provided by the sponsor.
Please refer to this study by its ClinicalTrials.gov identifier (NCT number): NCT00167024
Contact: Chao-Yuan Huang, MD | 886-2-23123456 ext 5238 | cyh0909@ha.mc.ntu.edu.tw |
Taiwan | |
National Taiwan University Hospital | Recruiting |
Taipei, Taiwan | |
Contact: Chao-Yuan Huang, MD 886-2-23123456 ext 5238 cyh0909@ha.mc.ntu.edu.tw | |
Principal Investigator: Chao-Yuan Huang, MD |
Principal Investigator: | Chao-Yuan Huang, MD | National Taiwan University Hospital |
ClinicalTrials.gov Identifier: | NCT00167024 History of Changes |
Other Study ID Numbers: |
9461700307 |
First Posted: | September 14, 2005 Key Record Dates |
Last Update Posted: | November 28, 2005 |
Last Verified: | March 2005 |
Keywords provided by National Taiwan University Hospital:
prostate cancer, DNA repair gene, genetic polymorphism |
Additional relevant MeSH terms:
Prostatic Neoplasms Genital Neoplasms, Male Urogenital Neoplasms Neoplasms by Site |
Neoplasms Genital Diseases, Male Prostatic Diseases |