Hip Fracture in Individuals under 60 Years of Age. A Prospective Multi-Center Study of the Epidemiology, Treatment, Outcome and Patient Satisfaction Regarding Hip Fractures.

Statistical analysis plan

10 February 2019
1.a. Bone quality, demographics and hormonal status in hip fracture patients under 60 years of age.

First author: Strøm Rönnquist
Co-authors: (in random order) Åkesson; Palm, Tange Kristensen, Bech Jensen; Fladmose Madsen, Overgaard; Viberg.
Last author: Rogmark

Study design: Prospective multi-center cohort study
Participants: Approx. 200 individuals aged 18-60 years
Exposure: Acute, non-pathological hip fracture (intra- and extracapsular), regardless of trauma level
Control group: Cohorts of middle-aged, non-fractured individuals with DXA measurements at Odense and Skåne University Hospital

Aim:
1. Comparison of bone mineral density at the time of hip fracture (DXA scan) and basic risk factors for osteoporosis (BMI, smoking, etc. = variables accessible in the control groups)
 Statistical analysis of categorical data using Chi-square test.

2. Descriptive analysis of other relevant factors in a young hip fracture cohort
 Statistical analysis of categorical data using Chi-square test.

Collected variables in the prospective study:
Gender, age, BMI
Comorbidity, medication
Diet
Abuse – alcohol, drugs, tobacco, anabolic steroids
Socioeconomics (working capacity, type of living)
Fracture history (own and first-hand relatives)
Laboratory tests including hormonal status
DXA scan at the time of the fracture
Fracture pattern, type of trauma
Physical / functional level prefracture (New mobility score and others)
Health-related quality-of-life prefracture

Hypotheses:
There are differences in BMD and risk factors when comparing the hip fracture group with a standard control group.
Within the hip fracture group; different levels of BMD are associated with comorbidities, hormonal status and life style factors.

Perspective/clinical relevance:
To identify those patients who have an underlying cause or reason for sustaining a hip fracture in relatively young age and, when appropriate, initiate preventive measures for future fractures.

1.b. Association between fracture type, fracture trauma type and bone mineral density

First author: Strøm Rönnquist
Co-authors: (in random order) Åkesson; Palm, Tange Kristensen; Fladmose Madsen, Overgaard; Viberg.
Last author: Rogmark
Study design: Prospective multi-center cohort study

Participants: Approx. 200 individuals aged 18-60 years

Exposure: Acute, non-pathological hip fracture (intra- and extracapsular) regardless of trauma level

Study groups: High and low bone mineral density; high and low trauma injuries.

Aim:
1. Analysis of association between bone mineral density at the time of hip fracture (DXA scan) and fracture type.
 - Statistical analysis of categorical data using Chi-square test.

2. Analysis of association between trauma type and fracture type.
 - Statistical analysis of categorical data using Chi-square test.

Collected variables in the prospective study:
Fracture pattern (femoral neck fracture – undisplaced and displaced; basocervical fracture; trochanteric fracture – stable and unstable; subtrochanteric fracture)
Type of trauma (other than low-energy, low-energy)
DXA scan at the time of the fracture
For adjustment:
- Gender, age, BMI
- Comorbidity, medication
- Diet
- Abuse – alcohol, drugs, tobacco, anabolic steroids
- Socioeconomics (working capacity, type of living)
- Fracture history (own and first-hand relatives)
- Laboratory tests including hormonal status
- Physical / functional level prefracture (New mobility score and others)
- Health-related quality-of-life prefracture

Hypotheses:
There is no association between low BMD and displaced/unstable hip fracture
There is no association between higher trauma energy and displaced/unstable hip fracture.
There is an association when both low BMD and higher trauma energy exists and displaced/unstable hip fracture.

Perspective/clinical relevance:
To understand the interaction between trauma energy level and bone strength (as measured by DXA) and fracture type.