Congenital Heart Disease Physical Activity Lifestyle Study (CHD-PALS)

Principal Investigator: Jamie L. Jackson

Center for Biobehavioral Health
The Research Institute at Nationwide Children's Hospital
Nationwide Children's Hospital

Assistant Professor of Pediatrics
The Ohio State University College of Medicine

Assistant Professor of Psychology
The Ohio State University College of Liberal Arts and Sciences

Version 1

3 November 2017
STATEMENT OF COMPLIANCE

The study will be carried out in accordance with Good Clinical Practice (GCP) as required by the following:

- ICH E6; 62 Federal Register 25691 (1997)
- NIH Clinical Terms of Award

All key personnel (all individuals responsible for the design and conduct of this study) have completed Human Subjects Protection Training.
SIGNATURE PAGE

The signature below constitutes the approval of this protocol and the attachments, and provides the necessary assurances that this trial will be conducted according to all stipulations of the protocol, including all statements regarding confidentiality, and according to local legal and regulatory requirements and applicable US federal regulations.

Site Investigator:*

Signed: [Signature] Date: 11/3/2017

Name
Title

* The protocol should be signed by the local investigator who is responsible for the study implementation at his/her specific site.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Compliance</td>
<td>ii</td>
</tr>
<tr>
<td>Signature Page</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td>Protocol Summary</td>
<td>vii</td>
</tr>
<tr>
<td>Key Roles</td>
<td>10</td>
</tr>
<tr>
<td>Background Information and Scientific Rationale</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Background Information</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Rationale</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Potential Risks and Benefits</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 Potential Risks</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2 Known Potential Benefits</td>
<td>17</td>
</tr>
<tr>
<td>Objectives</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Study Objectives</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Study Outcome Measures</td>
<td>18</td>
</tr>
<tr>
<td>3.2.1 Primary Outcome Measure</td>
<td>18</td>
</tr>
<tr>
<td>3.2.2 Secondary Outcome Measures</td>
<td>19</td>
</tr>
<tr>
<td>3.2.3 Other Outcome Measures</td>
<td>19</td>
</tr>
<tr>
<td>3.2.4 Other Exploratory Mechanisms</td>
<td>19</td>
</tr>
<tr>
<td>Study Design</td>
<td>21</td>
</tr>
<tr>
<td>Study Enrollment and Withdrawal</td>
<td>23</td>
</tr>
<tr>
<td>5.1 Participant Inclusion Criteria</td>
<td>23</td>
</tr>
<tr>
<td>5.2 Participant Exclusion Criteria</td>
<td>24</td>
</tr>
<tr>
<td>5.3 Treatment Assignment Procedures</td>
<td>24</td>
</tr>
<tr>
<td>5.3.1 Randomization Procedures</td>
<td>24</td>
</tr>
<tr>
<td>5.3.2 Reasons for Withdrawal</td>
<td>25</td>
</tr>
<tr>
<td>5.3.3 Handling of Withdrawals</td>
<td>25</td>
</tr>
<tr>
<td>5.3.4 Termination of Study</td>
<td>25</td>
</tr>
<tr>
<td>5.4 Study Intervention Description</td>
<td>25</td>
</tr>
<tr>
<td>5.4.1 Session Description</td>
<td>26</td>
</tr>
<tr>
<td>Modification of Study Intervention</td>
<td>27</td>
</tr>
<tr>
<td>Accountability Procedures for the Study Intervention</td>
<td>27</td>
</tr>
<tr>
<td>Assessment of Subject Compliance with Study Intervention</td>
<td>28</td>
</tr>
<tr>
<td>Concomitant Treatments</td>
<td>28</td>
</tr>
<tr>
<td>Study Schedule, Study Procedures/ Evaluations</td>
<td>29</td>
</tr>
<tr>
<td>6.1 Screening</td>
<td>29</td>
</tr>
<tr>
<td>6.2 Phase 1: Enrollment/Baseline (T1)</td>
<td>29</td>
</tr>
<tr>
<td>6.3 Phase 2: Enrollment in the RCT</td>
<td>30</td>
</tr>
<tr>
<td>6.4 Interim Assessment at Week 9</td>
<td>30</td>
</tr>
</tbody>
</table>
6.5 Post-Intervention at Week 22

- Page: 31

6.6 Additional Incentive

- Page: 32

7 Assessment of Safety

- Page: 33
 - 7.1 Methods and Timing for Assessing, Recording, and Analyzing Safety Parameters
 - 7.1.1 Adverse Events
 - 7.1.2 Procedures to be Followed in the Event of Abnormal Test Values or Abnormal Clinical Findings

- Page: 34
 - 7.2 Reporting Procedures
 - 7.2.1 Adverse Events

- Page: 34
 - 7.3 Type and Duration of Follow-up of Subjects after Adverse Events

- Page: 34
 - 7.4 Halting Rules

- Page: 34
 - 7.5 Safety Oversight

- Page: 35
 - 7.6 Study Hypotheses

- Page: 35
 - 7.7 Sample Size Considerations

- Page: 35
 - 7.8 Planned Interim Analyses (if applicable)

- Page: 35
 - 7.9 Final Analysis Plan

8 Source Documents and Access to Source Data/Documents

- Page: 38

9 Quality Control and Quality Assurance

- Page: 39

10 Ethics/Protection of Human Subjects

- Page: 40
 - 10.1 Ethical Standard

- Page: 40
 - 10.2 Institutional Review Board

- Page: 40
 - 10.3 Informed Consent Process
 - 10.3.1 Informed Consent/Assent Process (in Case of a Minor)

- Page: 41
 - 10.4 Subject Confidentiality

- Page: 41
 - 10.5 Study Discontinuation

11 Data Handling and Record Keeping

- Page: 42
 - 11.1 Data Management Responsibilities

- Page: 42
 - 11.2 Data Capture Methods

- Page: 43
 - 11.3 Types of Data

- Page: 43
 - 11.4 Study Records Retention

- Page: 43
 - 11.5 Protocol Deviations

12 Publication Policy

- Page: 44

13 Literature References

- Page: 45
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>IPAQ</td>
<td>International Physical Activity Questionnaire</td>
</tr>
<tr>
<td>IRB</td>
<td>Institutional Review Board</td>
</tr>
<tr>
<td>CHD</td>
<td>Congenital Heart Disease</td>
</tr>
<tr>
<td>CHD-PALS</td>
<td>Congenital Heart Disease Physical Activity Lifestyle Study</td>
</tr>
<tr>
<td>CITI</td>
<td>Collaborative Institutional Training Initiative</td>
</tr>
<tr>
<td>CO-I</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>DSMB</td>
<td>Data Safety Monitoring Board</td>
</tr>
<tr>
<td>Mplus</td>
<td>Statistical Modeling Program</td>
</tr>
<tr>
<td>MVPA</td>
<td>Moderate to Vigorous Physical Activity</td>
</tr>
<tr>
<td>NCH</td>
<td>Nationwide Children’s Hospital</td>
</tr>
<tr>
<td>PA</td>
<td>Physical Activity</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>SB</td>
<td>Sedentary Behavior</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Control Trial</td>
</tr>
<tr>
<td>REDCap</td>
<td>Research Electronic Data Capture</td>
</tr>
<tr>
<td>VO2max</td>
<td>Peak Oxygen Uptake</td>
</tr>
</tbody>
</table>
PROTOCOL SUMMARY

<table>
<thead>
<tr>
<th>Title:</th>
<th>Congenital Heart Disease Physical Activity Lifestyle Study (CHD-PALS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract:</td>
<td>Over 40,000 infants are born in the U.S. with congenital heart disease (CHD) each year, and with advancements in medicine, more than 90% of these individuals now live well into adulthood. This growing, and aging, population of CHD survivors is at risk for developing cardiac-related complications such as coronary disease, heart failure, and hypertension, which fortunately are responsive to lifestyle change. An American Heart Association (AHA) Scientific Statement highlights the important health benefits gained from increasing physical activity (PA) among children and adults with CHD, noting research evidence of better vascular health, reductions in hypertension, and lower rates of obesity. Despite this, evidence suggests that adolescent CHD survivors are less active than healthy controls, placing them at an elevated risk for preventable morbidity and premature mortality. Therefore, the currently study adapts a PA lifestyle intervention to adolescent CHD survivors (ages 15-18) who have moderate to complex CHD with the goal of increasing MVPA and decreasing SB. The study is split into 2 phases; a total of 85 adolescent and caregiver dyads will participate in Phase 1 to determine participants’ eligibility for Phase 2. Phase 2 is the randomized control trial in which a total of 70 adolescents are randomized to either the comparison arm (Fitbit and exercise prescription) or the intervention arm (Fitbit, exercise prescription, AND videoconferencing sessions with a coach).</td>
</tr>
<tr>
<td>Population:</td>
<td>Participants: For Phase 1 we aim to recruit 85 adolescent (ages 15 – 18 at enrollment), who have moderate to complex CHD, and caregiver dyads. For Phase 2 we aim to recruit 70 adolescent and caregiver dyads (35 assigned to each arm).</td>
</tr>
<tr>
<td>Study Duration:</td>
<td>4 years (2017-2021)</td>
</tr>
</tbody>
</table>
| **Participation Duration:** | Phase 1: 2 weeks
Phase 2: 22 weeks |
| **Description of the Intervention:** | Phase 2 of the study consists of being randomized into one of two arms; the comparison arm receives a Fitbit and an exercise prescription based on the |
results of the Phase 1 stress test. The intervention arm receives a Fitbit, an exercise prescription, and 8 videoconferencing sessions with a PA coach, which takes place over 20 weeks. Each session lasts 20-30 minutes and focuses on changing attitudes, perceptions of social norms, and perceptions of control over for engaging in PA, based on the principles of the Theory of Planner Behavior.

Objectives:

The long-term goal of this research study is to establish an effective intervention for sustaining increased levels of MVPA that will reduce morbidity and healthcare costs for CHD survivors. The objective of this study is to adapt a lifestyle PA intervention to adolescent CHD survivors at greater risk for future morbidity due to having more complex disease. This will involve (1) assessing feasibility, accessibility, and acceptability of the intervention to participants based on subjective ratings, as well as (2) evaluating preliminary efficacy of the intervention on time spent in MVPA and SB, as well as improvement in cardiorespiratory fitness as assessed by changes in VO2 max. We hypothesize that (1) participants will rate the intervention as feasible, easy to access, and acceptable. Additionally, we predict that (2) participants in the intervention arm will (A) increase MVPA (primary outcome), (B) decrease SB (secondary outcome), and (C) demonstrate an increase in VO2max (secondary outcome) at post-intervention relative to those in the control arm. The rationale for the proposed research is to obtain pilot data that will shape the next phase of investigation: determining the efficacy of this intervention for sustaining increased PA. Ultimately, we hope that knowledge gained from this line of research will extend longevity and optimize quality of life for CHD survivors as they age into adulthood.

Description of Study Design:

Randomized controlled trial with two treatment arms: (1) Comparison arm: Fitbit, exercise prescription and (2) Intervention arm: Fitbit, exercise prescription, and 8 videoconferencing sessions with a PA coach over the course of 20 weeks.

Estimated Time to Complete Enrollment (n=85):

3 years
1 KEY ROLES

Individuals:

Principal Investigator: Jamie L. Jackson, Ph.D.

Primary Mentor/Co-investigator: Kathryn Vannatta, Ph.D.

Mentors/Co-investigators: Joseph Rausch, Ph.D., Vidu Garg, M.D.

Consultants: Rick Petosa, Ph.D., Laureen Smith, Ph.D.,

Study Coordinator: Carine E. Leslie, B.S.

Behavioral Interventionist and Research Assistant: Jennifer Cotto, M.S.

Behavioral Interventionists: Jessica Henning, M.S., Sarah Weller, B.S.

Institution:

Center for Biobehavioral Health

The Research Institute at Nationwide Children’s Hospital

700 Children’s Drive

Columbus, OH 43205

Phone 614-722-3585
2 BACKGROUND INFORMATION AND SCIENTIFIC RATIONALE

2.1 Background Information

Congenital heart disease (CHD) comorbidities and cost
Over 40,000 infants are born in the U.S. with CHD each year, and with advancements in medicine, more than 90% of these individuals now live well into adulthood.\(^1\)-\(^3\) This growing, and aging, population of CHD survivors are at risk for developing cardiac-related complications such as coronary disease, heart failure and hypertension, which fortunately are responsive to lifestyle change.\(^4\) More than half of children and adolescents with surgically corrected CHD have signs of intimal hyperplasia, an atherosclerosis precursor, highlighting the importance of early intervention.\(^5\) Those with moderate and complex cardiac lesions\(^4\) are the ones in greatest need for intervention, as evidenced by significantly higher premature mortality rates as compared to the general population due to underlying cardiovascular issues.\(^6\) Increased rates of hospitalizations costing more than $3.16 billion annually due to higher incidence of coronary artery disease and heart failure among CHD survivors can be mitigated by early lifestyle intervention.\(^7\)

Physical activity (PA) engagement and benefits
An American Heart Association (AHA) Scientific Statement\(^8\) highlights the important health benefits gained from increasing PA among children and adults with CHD, noting research evidence of better vascular health, reductions in hypertension and lower rates of obesity. Positive health behaviors often decline during adolescence, and adolescents with CHD are no exception, which may lead to poor health behaviors in adulthood.\(^9\)-\(^11\) Furthermore, declines in PA are greater among girls, especially during adolescence.\(^12\),\(^13\) Similar sex differences have been reported among adolescents with CHD, such that males demonstrate higher cardiopulmonary exercise tolerance than females.\(^14\) Therefore, adolescence is an optimal age in which to intervene by changing lifestyle habits, such as PA, to prevent greater morbidity in both adolescence and adulthood.

Sedentary behavior (SB) is a risk factor
In addition to promoting moderate to vigorous physical activity (MVPA), a scientific statement by the AHA\(^8\) also noted the importance of decreasing SB. Emerging evidence has identified inactivity as an equally important independent risk factor for cardiovascular complications, even when guidelines for PA are met. Among healthy children, SB increases by approximately 30 minutes per year from childhood into adolescence due to more time spent watching TV and/or using computers.\(^15\) Rates of SB among CHD survivors have not been documented, despite
evidence suggesting that parents of children with CHD may unnecessarily restrict PA at early ages,16 possibly resulting in greater SB. Therefore, SB may be an equally important target for a lifestyle intervention. Consequently, in addition to measuring MVPA the current study will also measure SB, as a secondary measure, due to the evidence of poor health outcomes with a predominantly sedentary lifestyle.

Physical Activity interventions and the Theory of Planned Behavior

PA interventions among CHD survivors across the lifespan have primarily focused on structured exercise programs, often using a cardiac rehabilitation model (3 days/week for 12 weeks). A systematic review of exercise training programs among children and young adults with CHD indicated that exercise training was safe and improved fitness levels, including among those with complex cardiac lesions, but the long-term sustainability is relatively unknown.17 Of the 4 studies reviewed that included long-term follow-up, only 1 found a sustained effect, which was up to 5 years post-training. Of the other 3 studies, 1 did not find sustained effects and 2 only included survivors referred for cardiac rehabilitation, which limits applicability since many with CHD are never referred for cardiac rehabilitation. Interventions aimed at modifying lifestyle behaviors attempt to change long-term behavior by creating new positive habits rather than emphasize adherence to a time-limited structured program. The Theory of Planned Behavior18 has been used as a framework for lifestyle interventions, including among individuals with heart failure,19-21 rural populations with multiple cardiovascular risk factors,22 and adolescents.23 Among internet-based interventions, the Theory of Planned Behavior has been identified as having larger effect sizes than other Health Behavior Theories for adolescents.24 The Theory of Planned Behavior contains 3 primary elements hypothesized to contribute to behavior change: attitudes about the behavior, subjective norms and perceived control. Interventions using this theory aim to address knowledge deficiencies and negative perceptions of the behavior (attitude), increase perception of others’ approval of the behavior, such as family members, peers and medical staff (subjective norm), as well as troubleshooting barriers while increasing efficacy (perceived control). This framework may be particularly useful for adolescents with CHD since low PA in this population has been attributed to inaccurate negative attitudes about the consequences of PA on the heart or need for activity restriction by caregivers and others (e.g., sports coaches).25,26

Objective measures to assess physical activity (PA)

Two studies have reported time spent in MVPA among adolescents with CHD as measured by accelerometer. Duppen and colleagues (2015)27 stated that only 30% of their sample did not meet guidelines for MVPA (>60 min/day), which contrasts a study by Morrison et al. (2013)28 in which adolescents averaged 29 min/day in MVPA. Duppen et al.,27 noted that cultural and geographic differences may explain discrepancies within the literature, further highlighting the
importance of identifying rates of MVPA among adolescents in the U.S., of which the literature is completely lacking. Only 27% of “healthy” U.S. adolescents from the general population report any form of daily PA, suggesting that a large portion of adolescent CHD survivors in the U.S. are also relatively inactive, despite being at greater risk for poor health outcomes. These studies also draw attention to the need for using objective measures of PA to inform interventions, including using time spent in MVPA, as assessed by an accelerometer, for inclusion criteria so that adolescents in need of intervention are targeted. In the current study, objective measures of MVPA will also be used to stratify random assignment of participants, as well as included as covariates in study analyses, thereby improving scientific rigor as compared to previous studies. This strategy will allow the detection of group differences with fewer participants and is in accordance with guidelines for clinical trials. The current study will also examine change in peak oxygen uptake (VO2max), a measure of exercise tolerance, as a secondary outcome. VO2max has been identified as an independent predictor of 5-year mortality in young adult CHD survivors. While change in VO2max has been commonly assessed as an outcome in cardiac rehabilitation-style exercise interventions for CHD survivors, increased MVPA may not result in improved cardiorespiratory fitness. Current guidelines indicate that increasing moderate PA has significant health benefits, even in the absence of change in VO2max.

Utilizing technology to facilitate behavior change: Videoconferencing and a popular activity tracker (Fitbit®)

Videoconferencing behavioral interventions have demonstrated feasibility in other adolescent chronic illness populations, including diabetes and inflammatory bowel disease, as well as among adults at risk for cardiovascular disease. Videoconferencing as a mode of delivery for behavioral interventions has multiple advantages, such as eliminating some barriers to receiving the intervention (e.g., transportation, distance) and reducing costs for both providers and patients. Furthermore, videoconferencing and other modes of telehealth delivery have been shown to result in comparable rapport-building between youth and clinicians as face-to-face interventions and are accepted by families. A Fitbit will be used in the current study as part of the intervention so that participants receive moment-to-moment feedback on their PA. Commercially available activity trackers, such as Fitbit, are popular and have been shown to align well with Health Behavior Theories because they offer immediate feedback and have tailored goal-setting functions. Fitbits have been used with adolescents to track sleep, and PA in children with complex CHD as well as promote PA as part of an intervention with children with cancer.
2.2 Rationale

If adolescents with moderate to complex forms of CHD demonstrate preliminary evidence of benefitting from a PA lifestyle intervention grounded in the Theory of Planned Behavior, this may inform future intervention studies aimed at increasing levels of moderate to vigorous PA over time.

With more than 50% of children and adolescents with surgically corrected CHD having early signs of atherosclerosis, and little research identifying effective interventions to sustainably increase PA, there is a tremendous need for research on lifestyle interventions for this population. Identification of a lifestyle intervention to increase PA in CHD survivors is vital for reducing morbidity and improving quality of life. Interventions grounded in the Theory of Planned Behavior have demonstrated sustained increases in PA among other populations, including individuals with heart failure and rural populations with multiple cardiovascular disease risk factors. One PA lifestyle intervention using Social Cognitive Theory among adolescents with CHD was proposed in 2012, but results have yet to be published. Morrison and colleagues (2013) reported improved PA among adolescents with CHD after a 1-day group intervention conducted in a “motivational interview style” accompanied by monthly follow-up calls (6 months). Motivational interviewing addresses attitudes towards a behavior, self-efficacy and overcoming barriers, not unlike Theory of Planned Behavior. However, recruitment rates for Morrison et al.’s study were low (31.4%), which questions the generalizability of the findings, and cardiorespiratory fitness was not directly measured (VO2max). Due to the paucity of theoretically-driven interventions to improve lifestyle PA among CHD survivors, The Theory of Planned Behavior will be used as the current framework for this study. This theory will allow the identification of potential mechanisms of behavior change, such as attitudes, subjective norms and perceived control. Understanding the circumstances in which change is more likely to occur, or the mechanisms by which it occurs, will guide both development and modification of the intervention to achieve enhanced effects in a larger clinical trial.

Thus, the long-term goal of this research study is to establish an effective intervention for sustaining increased levels of MVPA that will reduce morbidity and healthcare costs for CHD survivors. The objective of this study is to adapt a lifestyle PA intervention to adolescent CHD survivors at greater risk for future morbidity due to having more complex disease. This will involve (1) assessing feasibility, accessibility, and acceptability of the intervention to participants based on subjective ratings as well as (2) evaluating preliminary efficacy of the intervention on time spent in MVPA and SB, as well as improvement in cardiorespiratory fitness as assessed by changes in VO2 max. With the hypothesis that (1) participants will rate the intervention as
feasible (i.e., not burdensome), easy to access (i.e., deliverable via videoconferencing), and acceptable (i.e., appealing). Additionally, we hypothesize that (2) participants in the intervention arm will (A) increase MVPA, (B) decrease SB, and (C) demonstrate an increase in VO2max at post-intervention relative to those in the control arm. The rationale for the proposed research is to obtain pilot data that will shape the next phase of investigation: determining the efficacy of this intervention for sustaining increased PA. Ultimately, we hope that knowledge gained from this line of research will extend longevity and optimize quality of life for CHD survivors as they age into adulthood.

Eligible adolescents are 15 to 18 years of age with moderate to complex CHD. This is because individuals with moderate and complex cardiac lesions are the ones in greater need for intervention, as evidenced by significantly higher premature mortality rates as compared to the general population due to underlying cardiovascular issues. Adolescents in the comparison arm receive a Fitbit and an exercise prescription, as well as complete the baseline, interim, and post-intervention assessments. In addition to the Fitbit and exercise prescription, adolescents in the intervention arm receive 8 20-30 min. videoconferencing sessions (i.e. Facetime, Google Hangouts or Skype) with a PA coach, which take place over the course of 20 weeks. Using the Theory of Planned Behavior as a guide, sessions focus on changing attitudes, perceptions of social norms, and perceptions of control towards PA. This theory was chosen given its larger effect size in internet-based interventions for adolescents when compared to other health behavior theories. For the intervention arm, the Fitbit is used to facilitate goal-setting and self-monitoring while working with the PA coach. These have been used to track and promote children and adolescents PA in other interventions.

2.3 Potential Risks and Benefits

2.3.1 Potential Risks

The current research study complies with the federal regulations definition of “minimal risk” [§45 CFR 46.102(i)] “that the probability and magnitude of harm or discomfort anticipated in the research are not greater, in and of themselves, than those ordinarily encountered in daily life or during the performance of routine physical or psychological examinations or tests.” Consequently, the CHD-PAL Study was reviewed by the NCH Institutional Review Board under §45 CFR 46.404 “Research not involving greater than minimal risk.”

Exercise training has been established as safe for most children and adolescents with CHD and PA promotion in this population is highly recommended. Nevertheless, we have designed a
protocol that implements several safeguards to reduce potential risk. Before a potential participant is approached for recruitment, his/her cardiologist is contacted to determine if the adolescent is able to safely engage in MVPA. If after receiving the cardiologist’s approval and the adolescent is recruited, then he/she undergoes an exercise stress test to rule out the presence of arrhythmia or cardiac ischemia, which would preclude them from engaging in regular MVPA, and therefore exclude them from participating in Phase 2 of the study. Exercise stress tests are conducted within the same space used for outpatient cardiology clinic and are staffed by at least one cardiologist. As part of the exercise stress test protocol, participants are encouraged to reach the limitations of their physical capacity, which can be uncomfortable. Thus, participants are told that they may experience normal levels of physical discomfort when undergoing the exercise stress test. Upon completion of the test, participants are provided with a towel and water, and are monitored by clinical staff throughout the duration and recovery of the test. If the exercise stress test results demonstrate arrhythmia or cardiac ischemia both the participant and the participants’ primary cardiologist are notified. Although learning this information could be distressing to participants or their caregivers, identification of an abnormality would have potential benefits to participants as well.

Similar to the exercise stress test, adolescents in the intervention arm may experience uncomfortable physical sensations due to exercising, including sore muscles, fatigue, and shortness of breath. If the participant has new cardiac-related symptoms since his/her last cardiology check-up that are concerning to the participant and caregiver, the interventionist (i.e. PA coaches) will recommend contacting the participant’s cardiologist and the study procedures are put on hold until the cardiologist clears the participant to return to the study. The interventionist also contacts the study PI, Dr. Jackson, who notifies the participant’s cardiologist that the participant is experiencing symptoms.

During videoconferencing, PA coaches conduct sessions in privacy and encourage participants to do the same. Coaches undergo the same training as other research staff at NCH, including completing Collaborative Institutional Training Initiative (CITI) certification and a day-long instructional seminar on protecting human subjects. Videoconferencing has a lower risk of privacy breach than email communications.

Participants are informed that participation is voluntary and that they have the right to withdraw from the study at any time, as well as may refuse to answer or may skip any question(s) that cause discomfort. While not anticipated, participants could experience some discomfort when completing survey items about their heart condition or treatment history. However, this risk is very small. If discomfort occurs, it would likely be transient and minimal. Participants are
encouraged to discuss any concerns about the content of the survey items with study personnel, who have experience using these questionnaires and are trained to respond appropriately. The more likely risk to participants is boredom while completing the questionnaires.

Loss of confidentiality is also a potential risk; though, no more so than in any other research study. Risks of breaching confidentiality are minimized in multiple ways. Participants are assigned a study ID number, which is used on all questionnaires (paper or online), as well as the accelerometer and Fitbit data. The only link between the participant’s name and ID is an electronic tracking sheet, which is located on a password protected server on the hospital’s secured research network, as well as on the hospital’s secure Windows OneDrive platform. Online questionnaire data and digital recordings of the intervention sessions are housed behind a secure firewall on the NCH research internet server and the hospital’s secure OneDrive platform. All other data are kept in a locked cabinet within a locked office at the hospital and only direct study personnel have access to this information. All study personnel who are working with data or protected health information are properly trained, which includes completing the online CITI certification and undergoing a day-long instructional seminar at the hospital for protecting human subjects and engaging in best practices for responsible conduct of research.

2.3.2 Known Potential Benefits

Participants may receive direct benefit from being provided with the results of an exercise stress test and exercise prescription. Results are shared with each participant’s cardiologist and entered under “research” in their medical record. Participants could also gain benefit from increasing their levels of PA. Finally, the information learned from the study could benefit future adolescent and adult CHD survivors by possibly identifying a feasible, accessible, and acceptable intervention that can improve PA engagement in a population at risk for significant future cardiovascular morbidities.
3 OBJECTIVES

3.1 Study Objectives
A total of 85 adolescent (ages 15 - 18) and caregiver dyads are anticipated to be enrolled in Phase 1 of the study, which establishes eligibility for Phase 2. For Phase 2, the randomized trial portion of the study, we plan to enroll a total of 70 adolescent and caregiver dyads. The aims of the study are to:

1. **Aim 1:** Assess feasibility, accessibility, and acceptability of the intervention to participants based on subjective ratings.

 Hypothesis 1: Participants will rate the intervention as feasible (i.e. not burdensome), easy to access (i.e., deliverable via videoconferencing), and acceptable (i.e. appealing).

2. **Aim 2:** Evaluate preliminary efficacy of the intervention on time spent in MVPA and sedentary, as well as improvement in cardiorespiratory fitness as assessed by change in VO2max.

 Hypothesis 2: Participants in the intervention arm will (A) increase MVPA relative to those in the control arm at post-intervention, (B) decrease SB relative to those in the control arm, and (C) demonstrate increase in VO2max at post-intervention relative to those in the control arm.

3. **Aim 3 (Exploratory):** Explore mechanisms of change in MVPA and SB, as specified by the Theory of Planned Behavior, including attitudes (i.e., knowledge about and belief in positive outcomes from physical activity), normative beliefs (i.e., participant-report of family/friend/physician beliefs about and support of physical activity) and perceived behavioral control (i.e., barriers and efficacy for physical activity).

3.2 Study Outcome Measures

3.2.1 Primary Outcome Measure

Number of minutes spent in MVPA as measured by an accelerometer.
3.2.2 Secondary Outcome Measures

Number of minutes spent being sedentary as measured by an accelerometer.

Maximal oxygen utilization during PA as measured by VO2max during an exercise stress test.

3.2.3 Other Outcome Measures

Health-related quality of life as measured by the Patient-Reported Outcomes Measurement Information System.

Self-reported physical activity as measured by the International Physical Activity Questionnaire.

3.2.4 Purported Mechanisms

PA attitudes as measured by the Benefits of PA questionnaire.

PA subjective norms as measured by the Physical Activity Norms and the Social Support for PA surveys.

PA perceived control as measured by the Barriers to Exercise survey and the Exercise Confidence survey.

3.2.5 Other Exploratory Predictors

Cardiac-related anxiety as measured by the Cardiac Anxiety Questionnaire.

Self-consciousness of body due to cardiac interventions scars as measured by the Body Image Disturbance Questionnaire.

Caregiver perceptions of adolescents’ health as measured by the Child Vulnerability Scale.

Caregiver perceptions of family discord as measured by the Family Environment Scale.

Caregiver perceptions of adolescents’ PA as measured by the Physical Activity Norms survey.
Caregiver health-related quality of life as measured by the Patient-Reported Outcomes Measurement Information System.
4 STUDY DESIGN

This single-site study is a randomized clinical trial of a Fitbit and exercise prescription vs. a Fitbit, exercise prescription, AND videoconferencing session with a PA coach over the course of 8 sessions in 20 weeks.

For Phase 1, adolescents are asked to complete less than 60 minutes of questionnaires, wear an accelerometer for 7 days, and undergo an exercise stress test. A caregiver is asked to complete 20-30 minutes of questionnaires. Once the exercise stress test is completed and the accelerometer is returned, adolescents are compensated $100. Once caregivers complete the online questionnaires, they are compensated $20. Parking and mileage reimbursement to/from the hospital is provided.

If a participant engages in less than 60 minutes of MVPA per day and has no contraindications on the exercise stress test, he/she is approached for participation in Phase 2. Once recruited, participants receive a Fitbit and an explanation of their exercise prescription based on the results of their exercise stress test as provided by an exercise physiologist. Next, study staff open an envelope (pre-prepared by the study statistician, Dr. Rausch) to reveal the participant’s study arm designation.

Participants are randomized to 1 of 2 arms: the comparison arm, which receives a Fitbit and the exercise prescription, or the intervention arm, which also receives a Fitbit and exercise prescription PLUS videoconferencing sessions (e.g., Google Hangouts) with a PA coach (8 sessions over the course of 20 weeks). Each session lasts approximately 20-30 minutes and is audiotaped. The intervention arm focuses on changing attitudes (e.g., identifying pleasurable physical activities), perceptions of social norms of PA (e.g., problem-solving ways to receive support from family and friends) and perceptions of control for engaging in PA (e.g., increasing self-efficacy through goal setting and reducing barriers), as outlined by the Theory of Planned Behavior, to increase time spent in MVPA and decrease SB. The Fitbit is used to facilitate goal setting and self-monitoring for participants in the intervention arm.

During the course of the study, participants in both arms are asked to participate in an interim assessment (week 9), which includes 30-45 minutes of questionnaires and wearing an accelerometer for 7 days, for which they are compensated $50. Around week 22, participants in both arms are asked to engage in a post-intervention assessment, consisting of 30-45 minutes of questionnaires, wearing an accelerometer for 7 days, and undergoing a final exercise stress test. Caregivers are asked to complete 20-30 minutes of surveys at the week 22 assessment.
Adolescents are compensated $100 and caregivers are compensated $20. Parking and mileage to/from the hospital is compensated for their final exercise stress test.

Medical information also is collected from participants’ online medical records to consider as covariates or moderators of the treatment effect, including sex and indicators of disease status (e.g., diagnosis, surgical history, functional class, number of medications, comorbidities, and the number of hospitalizations in the past year).

Physical activity coaches are graduate students pursuing advanced degrees in medicine, exercise physiology, or other health-related fields. They have undergone over 16 hours of training prior to working with the first participant and have completed all required human subjects training.
5 STUDY ENROLLMENT AND WITHDRAWAL

The total target sample size for enrollment in Phase 1 is 85 participants and in Phase 2, 70 participants (35 participants per arm). A higher enrollment is expected for Phase 1 than Phase 2 to account for some participants being deemed ineligible to proceed with Phase 2. Potential participants are identified through upcoming cardiology clinic rosters who meet the age (15-18 years of age) and diagnosis (moderate to complex CHD3) criteria. If a participant is 18, and he/she is no longer in high school, he/she must still live at home to be eligible. Study personnel check the patient’s medical record to verify eligibility. If a patient appears to be eligible, first the attending cardiologist confirms that they do not know of any reason the adolescent should not participate in this research, including limitations to engaging in MVPA. Next, the participants’ caregiver(s) (or their legal guardian of record) is sent a letter from the attending cardiologist, notifying them about the study and that study personnel will be in contact. An “opt out” phone number is provided so that the caregiver(s) can call and leave a message if they do not wish to be contacted. Approximately 1 week later, if no message was received, caregiver(s) are called by study personnel. During the phone conversation, the objectives and primary components of the study are discussed. If a caregiver and the potential participant are interested, verbal consent/assent is obtained for completing online questionnaires and the exercise stress test at NCH is scheduled. During the stress test visit, written consent/assent for the stress test and accelerometer assessment is obtained from the caregiver and adolescent. If a participant and his/her caregiver cannot be reached via phone, they are approached during their clinic appointment in person.

5.1 Participant Inclusion Criteria

Participants must meet all the inclusion criteria to be eligible to participate in the study. The criteria include:

1) Between 15 and 18 years of age, have not yet graduated from high school OR still living with caregivers

2) Diagnosed with moderate or complex structural CHD

3) Lives within 120 miles of NCH
5.2 Participant Exclusion Criteria

Participants meeting any of the exclusion criteria at baseline will be excluded from the study. These criteria include:

1) Do not speak and write proficiently in English
2) Have a diagnosis of a genetic syndrome (e.g., Downs, Marfans, Wolf-Parkinson-White)
3) Have cognitive impairments that would interfere with completion of study measures
4) Have been engaged in a formal exercise program within the past 6 months, including cardiac rehabilitation
5) Have undergone open-heart surgery or have had a valve replacement in the last 3 months
6) Are prohibited to engage in MVPA by their cardiologist

After completing Phase 1, participants are approached for recruitment into Phase 2 unless they meet additional exclusion criteria, including:

7) Having contraindications for exercise based on an exercise stress test (e.g., exercise-induced arrhythmias or evidence of cardiac ischemia)
8) Exercising >60 min/day of MVPA per the accelerometer

5.3 Treatment Assignment Procedures

5.3.1 Randomization Procedures

The PI, study staff, and the research participant do not know the participant’s arm designation until the envelope, which was prepared by the study statistician (Dr. Rausch) is opened. Randomization is stratified by the number of minutes spent in MVPA per the accelerometer data in Phase 1 (<21 min/day of MVPA vs. > 21 min/day of MVPA) with randomly varying block sizes. Strata were based on the mean baseline levels of MVPA as reported in 2 studies of adolescents with CHD.27,28
5.3.2 Reasons for Withdrawal

Study participation is discontinued under the following circumstances:

- If participant’s cardiologist determines that he/she is no longer eligible for the study due to a change in his/her cardiac condition.
- The participant or the participant’s legal guardian requests withdrawal from the study.
- Development or reveal of any exclusion criteria (e.g., need for cardiac surgery).

5.3.3 Handling of Withdrawals

If withdraw occurs because an adolescent’s cardiologist determines that the participant should no longer be in the study due to a change in medical status or the adolescent and/or caregiver request to be withdrawn, participants are asked to complete the assessments if possible and are included in intent-to-treat analyses.

5.3.4 Termination of Study

Because the AHA and American College of Cardiology indicate that receiving an exercise stress test is a standard of care and that adolescents with moderate to complex CHD should be engaged in routine PA as long as it is deemed safe,8 termination of the study due to the development of adverse events is not anticipated. There are several procedures aimed to rule out any participants who may be at an increased risk of an adverse event due to the intervention. First, adolescents’ cardiologists are asked about the eligibility of each potential participant. Second, adolescents undergo a baseline exercise stress test, in part, to rule out any cardiovascular contraindications for PA. If limitations in PA exist, these are incorporated into the exercise prescription developed by the exercise physiologist who conducted the stress test, and the PA coaches work with adolescents on PA within the parameters of the exercise prescription. Adolescents’ cardiologists have access to the results of the stress test, which are posted in participants’ electronic medical record. However, the study will be terminated if the DSMB or IRB concludes, based on their findings, that termination is in the best of the participants.

5.4 Study Intervention Description

During the Phase 2 of the study participants are randomized into the comparison or intervention arm. Both the comparison and intervention arm participants receive a Fitbit and are asked to complete the interim (at 9 weeks) and post-intervention (at 22 weeks) assessments. In addition, the intervention group is asked to complete 8 videoconferencing sessions with a PA coach over 20
weeks (Sessions 1-4 occur weekly; Session is in week 6; Session 6 is in week 8; Session 7 is in week 12; Session 8 is in week 20) with each session lasting approximately 20-30 minutes. The topics for the sessions focus on helping participants to:

1) Understand the benefits of MVPA, find physical activities they enjoy, and delineate pros and cons of engaging in MVPA using a non-judgmental stance (Attitudes)
2) Trouble-shoot engaging family and friends to be supportive of or engage in PA with the participant (Subjective Norms)
3) Find creative ways to incorporate more MVPA, resolve barriers to PA and promote efficacy for engaging in MVPA, and identify intrinsic rewards for accomplishing goals (Perceived Control)

All of the sessions contain a goal-setting component based on the exercise prescription the participant obtained from his/her exercise stress test. Participants receive text messages in between sessions, which contain motivational or encouraging content.

5.4.1 Session Description

Session 1 (Week 1)

Coaches inquire about participants’ attitudes about PA and encourage them to get familiarized with their Fitbit.

Session 2 (Week 2)

Participants’ are encouraged to discuss their knowledge about PA and to think about pros and cons for engaging in PA. Goals are set in collaboration with the participant, including increasing participants’ PA frequency, duration, or intensity.

Session 3 (Week 3)

Coaches inquire about participants PA self-efficacy/perceived control by asking what gets in the way of engaging in activities that the participant enjoys and troubleshoot around controllable barriers. Participants are also encouraged to try a new type of PA. Goals are set for increasing frequency, duration, or intensity when engaging in PA.

Session 4 (Week 4)

Coaches will inquire about participants PA subjective norms (e.g., “Have you talked with your caregivers/siblings/friends/cardiologist about being active?” “What do they think about you being active?”), and are encouraged to talk to family/friends/cardiologist about being active if they have not, as well as invite family/friends to join them in physical activities. Goals are set to increase frequency, duration, or intensity of PA.
Session 5 (Week 6)

Coaches promote participants’ independence by modeling the use of core concepts from the Theory of Planned Behavior learned in Sessions 1-4 with emphasis placed on managing barriers and promoting boosters to PA. Participants are encouraged to increase frequency, duration, or intensity of PA based on what they perceived as being the easiest to increase.

Session 6 (Week 8)

Coaches continue promoting participants’ independence by discussing the process of goal-setting, including making achievable goals and anticipating barriers. Participants are asked to set up his/her goals in respect to increase frequency, duration, or intensity of PA.

Session 7 (Week 12)

Coaches continue promoting participants’ independence by reflecting about their progress and discussing the process of setting long-term goals. Participants are encouraged to set new goals every 2 weeks during the span between Session 7 and 8. Coaches help participants identify potential barriers to achieving their goals, as well as how they can continue to use their Fitbit for self-monitoring.

Session 8 (Week 20)

Coaches summarize the intervention, focusing on the participant’s successes and gains. Coaches will also inquire about participants’ motivation and promote maintenance.

5.5 Modification of Study Intervention

Modifications to the study intervention may occur if a participant experiences a change in their cardiac health during the course of the study and his/her cardiologist recommends an alteration in the participant’s exercise prescription.

5.6 Accountability Procedures for the Study Intervention

Individual and group supervision sessions are held for coaches to clarify study procedures, receive feedback on interactions with participants, and share ideas for ways to trouble-shoot around barriers to PA that participants broach during session Dr. Vannatta, who is familiar with the study but is not directly involved, listens to a random selection of 3 audiotaped sessions per participant and rated on their fidelity. Fidelity <90% triggers retraining of the interventionist as to the study materials.
5.7 Assessment of Subject Compliance with Study Intervention

Participant compliance in the intervention arm is monitored in two ways. First, participants are asked to wear a Fitbit, which is used by the coaches to assess the participants’ engagement in MVPA. Coaches request that participants in the intervention arm sync their Fitbit each day so that coaches may monitor their PA levels and incorporate feedback during sessions. Participants’ attendance at each session is documented. For those participants in the comparison arm, they are told to sync their Fitbit regularly upon first receiving the Fitbit, but are not contacted about the Fitbit again.

5.8 Concomitant Treatments

Given the primary and secondary outcomes of the study, participants who are currently or in the past 6 months have engaged in a formal exercise program, including cardiac rehabilitation, are not able to participate in the study. Engaging in sports during the study is not an exclusionary criterion.
6 STUDY SCHEDULE, STUDY PROCEDURES/ EVALUATIONS

6.1 Screening

Potential participants are identified through a list of all patients who meet the age and diagnosis criteria who have a scheduled clinic appointment in the upcoming month. Once the list has been generated, study personnel check the patient’s medical record to verify their eligibility. If a patient appears to be eligible, the participants’ caregiver(s) (or their legal guardian of record) are first sent a letter from the attending cardiologist, notifying them about the study and that study personnel will be in contact. The cardiologist confirms at this time that they do not know of any reason the adolescent should not participate in this research, including limitations to engaging in MVPA.

6.2 Phase 1: Enrollment/Baseline (T1)

Once the caregiver and the adolescent have consented/assented, they are asked to complete an online questionnaire, and the adolescent is asked to wear an accelerometer for 7 days and undergo an exercise stress test. The stress test is completed at NCH within 3-4 weeks of recruitment and standardized feedback will be provided by an exercise physiologist, which includes their VO2max. Once completed, participants are compensated $100 for their time for the baseline assessment.

Baseline online questionnaire:
- Socio-demographics characteristics (caregiver & adolescent)
- Benefits of PA questionnaire (adolescent)
- Physical Activity Norms survey (caregiver & adolescent)
- Social Support for Physical Activity survey (adolescent)
- Barriers to Exercise survey (adolescent)
- Exercise Confidence survey (adolescent)
- Patient-Reported Outcomes Measurement Information System (caregiver & adolescent)
- International Physical Activity Questionnaire (adolescent)
- Cardiac-Related Anxiety (adolescent)
- Body Image Disturbance Questionnaire (adolescent)
- Family Dynamics (caregiver)
- Child Vulnerability Scale (caregiver)
VO2max: VO2 measurement is obtained via a graded exercise stress test on a treadmill. Exercise stress test results are used by the exercise physiologist to devise an exercise prescription that consists of recommendations for frequency, duration, intensity and type of PA. Exercise prescriptions are provided to participants if they qualify and enroll in Phase 2. Participants who are found to have an arrhythmia or show evidence of cardiac ischemia during exercise stress testing are immediately referred to their cardiologist for follow-up and are not be eligible for Phase 2.

MVPA and SB: Participants receive a triaxial accelerometer (ActiGraph, model wGT3X-BT), sensitive to movement in all directional planes, to measure the amount of time spent in sedentary, light, moderate, and vigorous PA. The accelerometer is worn on the waist for 7 days for at least 10 hours per day, only to be removed when showering or submerging in water (e.g., swimming). If baseline accelerometer data indicates that a participant averages at least 60 minutes of MVPA per day, they are not eligible for Phase 2.

Compensation: Guardians are compensated $20 after they complete the baseline surveys. Adolescents are compensated $100 for completing the baseline survey, exercise stress test, and wearing the accelerometer for at least 4 days (1 weekend day, 3 weekdays), for at least 10 hours per day. Additionally, participants are reimbursed for their mileage to/from the hospital for the exercise stress test and their parking in reimbursed.

Contact and Scheduling. If the participant is eligible for the Phase 2, they are contacted by phone and asked to schedule a home visit if interested in participating.

6.3 Phase 2: Enrollment in the RCT

Eligible participants from Phase 1 are met at their home (or the hospital if preferred) to receive their Fitbit and exercise prescription based on the results of their stress test. They are then randomized into the comparison or treatment arm by the research assistant who will open an envelope with the participant’s arm designation. Up until that point, the study PI, study staff, and the participant are naïve to the study arm designation.

6.4 Interim Assessment at Week 9

Participants in both arms are asked to complete an interim assessment (Week 9), which includes:
Interim online questionnaire: Adolescent participants are asked to complete a questionnaire that is the same as what was completed at Baseline, with the exception that those participants in the comparison arm receive questions about any changes to their health since Baseline.

Benefits of PA questionnaire (adolescent)
Physical Activity Norms survey (adolescent)
Social Support for Physical Activity survey (adolescent)
Barriers to Exercise survey (adolescent)
Exercise Confidence survey (adolescent)
Patient-Reported Outcomes Measurement Information System (adolescent)
International Physical Activity Questionnaire (adolescent)
Cardiac-Related Anxiety (adolescent)
Changes in Health (adolescent)

MVPA and SB: Participants receive an accelerometer again for the same period as the Baseline assessment.

Compensation: Adolescents are compensated $50 for completion of the interim assessment survey and wearing the accelerometer for at least 4 days (1 weekend day, 3 weekdays), for at least 10 hours per day.

6.5 Post-Intervention at Week 22

Participants in both arms are asked to complete a post-intervention assessment a week 22, which includes:

Post-intervention online questionnaire: Similar items are included on the post-intervention questionnaire as with the baseline and interim assessment with the exception that all participants and their caregivers are asked to rate their satisfaction with the intervention.

Benefits of PA questionnaire (adolescent)
Physical Activity Norms survey (caregiver & adolescent)
Social Support for Physical Activity survey (adolescent)
Barriers to Exercise survey (adolescent)
Exercise Confidence survey (adolescent)
Patient-Reported Outcomes Measurement Information System (adolescent)
International Physical Activity Questionnaire (adolescent)
Cardiac-Related Anxiety (adolescent)
Body Image Disturbance Questionnaire (adolescent)
Child Vulnerability Scale (caregiver)
Changes in Health (adolescent)
Post-Intervention Satisfaction (caregiver & adolescent)

MVPA and SB: Participants receive an accelerometer again for the same measurement period as in previous assessments.

VO2max: VO2 measurement is obtained again with a graded exercise stress test using a modified Bruce protocol. Participants who were found to have an arrhythmia or show evidence of cardiac ischemia during exercise stress testing will be immediately referred to their cardiologist for follow-up.

Compensation: Caregivers are compensated $20 during the exercise stress test visit after they complete the post-intervention surveys. Adolescents are compensated $100 for completion of the post-intervention survey, exercise stress test, and returning the accelerometer with a minimum of 3 weekdays and 1 weekend day (8 hours or more) of data. Additionally, participants are compensated for their transportation costs to and from the NCH.

6.6 Additional Incentive

In addition to the compensation described in sections 7.2, 7.4, and 7.5, participants in both arms are able to keep the Fitbit.
7 ASSESSMENT OF SAFETY

7.1 Methods and Timing for Assessing, Recording, and Analyzing Safety Parameters

7.1.1 Adverse Events

Adverse Event

For the current study, an adverse event is an unanticipated change in physical symptoms that is (1) concerning to the participant and (2) results in seeking medical attention. We do not anticipate any severe medical adverse events due to study procedures. However, medical events that occur for participants during the course of the study are comprehensively documented, including events during the stress test, symptoms reported during the course of the intervention, dates and reasons for pauses in the study protocol due to symptom reporting, and determination of ability to proceed by participants’ cardiologists. All unscheduled cardiology outpatient visits, visits to urgent care or the emergency department, unscheduled hospitalizations, or any other changes in health are documented. Both participants in the comparison and intervention arms are asked whether they sought medical attention in the aforementioned contexts during the interim and post-intervention questionnaires.

The current study has several procedures in place to reduce the likelihood of serious adverse events. Potential participants’ cardiologists are notified prior to being recruited for the study and excluded if the cardiologist has communicated or documented any concerns about that adolescent engaging in MVPA. All participants undergo a baseline exercise stress test and are not approached for recruitment for Phase 2 if contraindications are detected in Phase 1. In the rare event that a participant has an acute medical event during the exercise stress test, appropriate hospital procedures are enacted, which include calling an emergency response team and immediate evaluation by a cardiologist. The same procedures used for patients undergoing exercise stress testing as part of a medical evaluation are initiated and followed. During the course of the intervention, if an adolescent reports cardiac symptoms that are concerning to the participant and are new since the last cardiac evaluation, PA coaches are trained to request that the adolescent tell his/her caregiver (if they haven’t already done so) and contact their cardiologist. Adolescents and their caregiver have given the study PI, Dr. Jackson, permission to talk with the cardiologist in the
instance that a concerning and new cardiac symptom is reported. All study procedures are put on hold until the adolescent is evaluated by the cardiologist and cleared to proceed with the study.

7.1.2 Procedures to be Followed in the Event of Abnormal Test Values or Abnormal Clinical Findings

Incidental findings from the exercise stress test are communicated to the adolescent, caregiver, and the adolescent’s cardiologist. The adolescent’s cardiologist will make a determination as to whether the adolescent may proceed with the study if an abnormal event, or incidental finding, is detected.

7.2 Reporting Procedures

7.2.1 Adverse Events

Any adverse events are reported to the DSMB and IRB.

7.3 Type and Duration of Follow-up of Subjects after Adverse Events

All cardiac-related adverse events are discussed with the cardiology medical team. The cardiology medical team determines whether participation in the study is suspended, and for how long, or terminated.

7.4 Halting Rules

If it is found that the study intervention is related to any serious adverse events, enrollment will be temporarily suspended until a safety review is convened. The DSMB will decided whether the study should continue per protocol, proceed with caution, be further investigated, be discontinued, or be modified and then proceed. Suspension of enrollment (for a particular group or for the entire study) is another potential outcome of a safety review.

7.5 Safety Oversight

Safety oversight of this study is under the direction of the study PI, NCH IRB, as well as a Data Safety Monitoring Board (DSMB). The DSMB consists of two faculty members from NCH. Dr. May Ling Mah is a dual-boarded pediatric and adult congenital cardiologist housed in the Heart Center at NCH. Dr. Mark Klebanoff is a board-certified pediatrician and a former Director of the Division of Epidemiology, Statistics, and Prevention Research at the National Institute of Child
Health and Human Development. Dr. Klebanoff has been involved as a Co-I of multiple RCTs and currently serves on the DSMB for an NIH-funded clinical trial. The NCH IRB has reviewed and approved the Data and Safety Monitoring Plan for this study. Bi-yearly reports summarizing the number of participants enrolled, the number of stress tests completed, the number of abnormalities detected during exercise stress testing, and the number of participants who have contacted their cardiologists due to concern over symptoms while engaged in the treatment arm will be provided to the DSMB. This summary is submitted to the IRB with the annual review.

7.6 Study Hypotheses

Hypothesis 1: Participants will rate the intervention as feasible (i.e., not burdensome), easy to access (i.e., deliverable via videoconferencing), and acceptable (i.e., appealing).

Hypothesis 2: Participants in the treatment arm will (A) increase MVPA to those in the control arm at post-intervention, (B) decrease sedentary behavior relative to those in the control arm, and (C) demonstrate an increase in VO2max at post-intervention relative to those in the control arm.

7.7 Sample Size Considerations

An important aim of the current study is estimating an effect size for the intervention on increasing MVPA. A sample size of n=35 per group will provide 80% power to detect a large effect size\(^42\) for the standardized mean difference, still allowing for possible detection of a medium effect size (d=.6) with 55% power. Effect sizes from relevant studies examining change in MVPA range from large (d=.94; CHD adolescents in a motivational interviewing-style exercise intervention)\(^28\) to small (d=.17; older adults with cardiovascular risk factors).\(^22\) Thus, our primary goal is to estimate an initial effect size for our intervention in our population, with a secondary goal to detect large effect sizes that may exist for study outcomes.

7.8 Planned Interim Analyses (if applicable)

No interim analysis is planned.

7.9 Analysis Plan

Aim 1: Evaluate the feasibility, accessibility and acceptability of the intervention.
The percent of participants who rated the intervention as feasible, accessible and appealing (4 or 5 on a 5-point scale) will be calculated. Recruitment rate will be calculated as a percentage of those recruited out of those approached. Percent adherence across sessions will be calculated for both the intervention and comparison groups as the number of sessions attended out of 8. Similarly, the retention rate will be identified by dividing the number of participants who do not complete the study by the number of participants enrolled.

Aim 2: Examine preliminary efficacy of the intervention on time spent in MVPA.

First, independent sample t-tests (continuous variables) or chi-square tests (categorical variables) will compare study arms on all variables at baseline, including biological considerations such as sex and disease status, to determine if statistically significant differences are present. Only the pre-specified covariates of baseline minutes spent in MVPA and baseline VO$_{2\text{max}}$ will be included in the primary analyses. However, if statistically significant differences are found at baseline, those variables will be examined as covariates in all statistical models of interest in an exploratory fashion.

Second, the following statistical model for repeated measures (RM), based on maximum likelihood estimation, will be employed,

\[
y_{it} = \beta_0 + \beta_1 Time_t + \beta_2 Time_t \times Trt_i + \varepsilon_{it},
\]

where implicitly it is assumed that there is no main effect of Trt_i, y_{it} is minutes in MVPA at time t, $Time_t$ is coded as 0 for baseline and 1 for post-intervention, and the primary effect of interest is β_2, which is the difference between groups on participants' minutes in MVPA. In this RM model, baseline levels of minutes in MVPA is constrained to have equal means across groups by assuming there is no main effect of the intervention, Trt_i. This constraint yields a statistical test for β_2 analogous to the test of the treatment group main effect per ANCOVA without requiring list-wise deletion to account for missing data. A similar strategy will be taken for analyzing change in SB and VO$_{2\text{max}}$ as secondary outcomes.

Aim 3: Explore mechanisms of change in MVPA and SB, as specified by the Theory of Planned Behavior, including attitudes (i.e., knowledge about and belief in positive outcomes from physical activity), normative beliefs (i.e., participant-report of family/friend/physician beliefs about and support of physical activity) and perceived behavioral control (i.e., barriers and efficacy for physical activity).

Differences between intervention and comparison arm participants on attitudes, normative beliefs and perceived control at the interim assessment will be examined using independent sample t-tests. These variables then will be included in longitudinal mediation models exploring the indirect effects of the intervention on change in behavior as compared to the comparison group on MVPA and SB via the identified mechanisms at the interim assessment. We will use Mplus, which employs bootstrapping to statistically test mediators of the pathway of interest, both individually and simultaneously, to estimate whether one accounts for more variance in the treatment effect relative to another. We will follow guidelines for testing longitudinal mediation within Cole & Maxwell and MacKinnon. We acknowledge that due to the limited sample size, significant mediation may not be detectable. However, indirect paths nearing significance will
have important implications for the future refinement of the intervention by allowing us to focus on the most salient mechanisms of behavior change for the R01 application. Significant Pearson correlations between baseline levels of proposed mechanisms of change and MVPA and SB may also be informative for adjusting the intervention prior to the R01 application to more directly address these factors. Sex will be explored as a potential moderator of intervention effects.

Other Analyses: Relationships between other predictors and study outcomes will also be explored. For example, cardiac-related anxiety, body image disturbance, caregiver perceptions of the adolescent’s health, caregiver perceptions of family discord, caregiver perceptions of the adolescent’s PA, and the caregiver’s health-related quality of life will be examined as possible predictors of the adolescent’s willingness to participate in Phase 2 of the study, as well as change in the study outcome variables using linear regression.
8 SOURCE DOCUMENTS AND ACCESS TO SOURCE DATA/DOCUMENTS

All study related records are kept in compliance with the regulatory and institutional requirements of confidentiality of subjects. Examples of these original documents and data records include, but are not limited to: hospital records and recorded data from surveys, accelerometers, Fitbits, and videoconferencing sessions. Also, only authorized study personnel and NCH IRB staff have access to the records, all of whom have received training on the responsible conduct of human subject research.
9 QUALITY CONTROL AND QUALITY ASSURANCE

The quality management program for this study consist of a system of quality checks on all data collection procedures, in addition to a system of training.

All study personnel working with data or protected health information have been properly trained, including completing the online Collaborative Institutional Training Initiative certification and undergoing a day-long instructional seminar at the hospital for protecting human subjects and engaging in best practices for responsible conduct of research. Furthermore, PA coaches have undergone over 16 hours of training prior to working with the first participant and have completed all required human subjects training.

At periodic intervals, the quality of the videoconferencing sessions will be evaluated by Dr. Vannatta who will listen to three randomly selected sessions for participant. These evaluations will consist of completing a fidelity checklist to evaluate compliance/adherence to the session protocol.
10 ETHICS/PROTECTION OF HUMAN SUBJECTS

10.1 Ethical Standard

The investigator will ensure that this study is conducted in full conformity with the principles set forth in The Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research of the US National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (April 18, 1979) and codified in 45 CFR Part 46 and/or the ICH E6; 62 Federal Regulations 25691 (1997).

10.2 Institutional Review Board

The NCH IRB has reviewed and approved the protocol for this study, including all associated documents such as the informed consent/assent, surveys, and work sheets for the videoconferences. Study amendments will be approved by the NCH IRB prior to implementing any edits to the study protocol or associated documents.

10.3 Informed Consent Process

Potential participants are identified through a list of all patients who meet the age and diagnosis criteria. Once the list has been generated, study personnel check the patient’s medical record, as well as contact the patient’s cardiologist, to verify their eligibility. If a patient appears to be eligible, the participants’ caregiver(s) (or their legal guardian of record) are sent a letter from the attending cardiologist, notifying them about the study and that study personnel will be in contact. An “opt out” phone number on the letter is provided so that the caregiver(s) can call and leave a message if they do not wish to be contacted. Approximately 1 week later, if no message was received, the caregiver(s) are called by study personnel. During the phone conversation, the objectives and primary components of the study are discussed. Also, potential participants are reminded of their rights as a participant, including that nonparticipation will not impact their care at NCH. If both a caregiver and the adolescent are interested, verbal consent/assent is obtained for completing the online questionnaires and the exercise stress test is scheduled. During the stress test, written consent for using the accelerometer and undergoing the stress test is obtained from caregivers and written assent or consent (if over 18) is obtained from adolescent participants. Participants retain a copy of consent/assent forms for their own records.
10.3.1 Informed Consent/Assent Process (in Case of a Minor)

For participants under the age of 18, both verbal consent from a caregiver and verbal assent from the adolescent is obtained for completing the online questionnaire. Written consent and assent is then obtained for wearing the accelerometer and undergoing the exercise stress test at the exercise stress test visit, thereby completing the Phase 1 consent/assent process. Similarly, written consent from a caregiver and written assent or consent (if 18 years of age) from the adolescent is obtained to participate in Phase 2 of the study.

10.4 Subject Confidentiality

Subject confidentiality is strictly held by the PI, study personnel, as well as the sponsor(s) and their agents. The study protocol, data, and all other information generated is held in strict confidence. No information concerning the study or the data will be released to any unauthorized third party.

A study monitor or other authorized representatives may inspect all documents and records maintained. Records will be retained until it has been determined that those participants would not be contacted for follow-up or other relevant studies.

10.5 Study Discontinuation

If the DSMB were to determine that the study procedures were producing more harm than good for participants, the study would be discontinued.
11 DATA HANDLING AND RECORD KEEPING

11.1 Data Management Responsibilities

The PI is responsible for ensuring the accuracy, completeness, legibility (if applicable), and timeliness of the data reported. All study data is reviewed by the study personnel, who ensure that the obtained information is accurate and complete.

Additionally, study personnel are responsible for the data management, quality review, analysis, and reporting of the study data under the direction of the PI.

11.2 Data Capture Methods

For the purposes of this study, data is captured via paper and/or electronic methods. The only link between the participants name and ID is an electronic tracking sheet, which is stored on the password protected hospital network and hospital OneDrive. All questionnaire data is stored in REDCap, a secure web application for building and managing online surveys and databases. Fitbit data is stored in Fitabase, a comprehensive online data management platform. Accelerometer data, along with the exported questionnaire and Fitbit data, as well as the digital recordings of the videoconferencing session is housed behind a secure firewall on the password protected NCH internet server. All other data is kept in a locket cabinet within a locked office at NCH and only direct study personnel have access to this information.

Also, study personnel will conduct internal quality checks, such as automatic range checks, to identify data that appear inconsistent, incomplete, or inaccurate.
11.3 Types of Data

Data for this study include questionnaires (electronic or pen and paper), medical record, and other forms of electronic data from accelerometers, Fitbits, and the exercise stress tests.

11.4 Study Records Retention

Study records are kept on the password protected hospital network and hospital OneDrive until it has been determined that those participants would not be contacted for follow-up or other relevant studies.

11.5 Protocol Deviations

A protocol deviation is any noncompliance with the clinical trial protocol, Good Clinical Practice, or Manual of Procedures requirements. The noncompliance may be either on the part of the subject, the investigator, or the study personnel. As a result of deviations, corrective actions are to be implemented promptly.

All deviations from the protocol must be addressed in study source documents and are documented. Protocol deviations are sent to the IRB per their guidelines.
12 PUBLICATION POLICY

Following completion of the study, the PI anticipates publishing the results of this research in a scientific journal. The International Committee of Medical Journal Editors (ICMJE) member journals have adopted a trials-registration policy as a condition for publication. This policy requires that all clinical trials be registered in a public trials registry such as ClinicalTrials.gov*, which is sponsored by the National Library of Medicine.
13 LITERATURE REFERENCES

