MALABSORPTION AND GUT MICROBIOTA PROFILE CHANGES AFTER LAPAROSCOPIC MINI-GASTRIC BYPASS VS ROUX-EN-Y GASTRIC BYPASS:
A PROSPECTIVE MULTICENTER COMPARATIVE STUDY

23/01/2018
RESEARCH UNITS

1. Principal Investigator: Prof. Gianfranco Silecchia M.D. PhD, Director Division General Surgery & Bariatric Center of Excellence-Centro di Ecellenza Sicob. – “Sapienza” University of Rome – Polo pontino – gianfranco.silecchia@uniroma1.it

Research fellows: Cristian Boru, (MD PhD student), Angelo Iossa (MD PhD student), Marcello Avallone (MD Resident general surgery), Emanuela Paone (psychologist)
2. Metabolic and Obesity Unit “Sapienza” University of Rome - Policlinico Umberto I, Rome, Italy: Frida Leonetti (Associated professor of endocrinology), Danila Capoccia (Clinical Research Fellow, endocrinologist), Federica Coccia (Research Fellow, endocrinologist)

3. Stefano Ginanni Corradini MD PhD: Professor of Gastroenterology, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy.

4. Mario Musella MD: General Surgery Professor, “Federico II” University of Naples, Department of Medico-Surgical Sciences and Biotechnologies, AOU "Federico II", Naples, Italy. Coworkers: Brunella Capaldo MD (Associated Professor of Endocrinology), Paolo Bianco MD (Resident General Surgery)

5. Miguel Ángel Carbajo MD PhD: Director of Centre of Excellence for the study and Treatment of Obesity and Diabetes, Valladolid, Spain.

6. Fredrik Bäckhed MD PhD: Departments of Molecular and Clinical Medicine (the Wallenberg Laboratory), University of Gothenburg, Gothenburg, Sweden.
7. Antonio Molinaro MD PhD: Departments of Molecular and Clinical Medicine (the Wallenberg Laboratory), University of Gothenburg, Gothenburg, Sweden.

Background:

Bariatric surgery is the best choice to treat morbid obesity and its severe co-morbidities (1, 2, 3). In 1997, Robert Rutledge proposed a new procedure, the mini gastric bypass (MGB), a variation of the Roux-en-Y gastric bypass (RYGB) with a single anastomosis (3). MGB seems to provide similar results as concern weight loss and control of metabolic co-morbidities while presenting the benefit of being more easily laparoscopic performed and revisable (4, 5). However, this operation is still controversial because of biliary reflux and possibly increasing the risk of esophageal cancer in absence of validated steps of the procedure (volume of the gastric pouch, type gastro-jejunal anastomosis, distance from Treitz) (6).

The biliopancreatic limb length may explain the results of superior excess weight reduction as well as the higher incidence of hemoglobin deficiency after 5 year follow-up comparing MGB vs RYGB (7). This malabsorption could results in severe malnutrition defined as a %EBMIL > 100 % and an albumin level < 30 g/l (8).

In 2005 Rutledge observe malnutrition in 31/2,401 patients (5), Noun et al. reported 4 cases of malnutrition out of 1,000 patients of MGB (9), Lee et al.
(10) reported a revision rate of 1.7% at 9 years follow-up in their series of 1,322 patients and the most common cause of revision was malnutrition in nine cases. In addition, Wang et al. (11) operated 423 MGB and reported anemia as a late complication in 28% of patients, and most cases were microcytic, the reason for the high incidence was reported to be likely due to the duodenal bypass with malabsorption of iron. However, all data published on the mal-absorptive effects of MGB are retrospective so, until now, there is no prospective comparative study to assess the malaborbitive efficacy of MGB vs RYGB. Recently an experimental study carried out in a rat model evaluated the malabsorption of MGB versus RYGB suggesting a higher protein malabsorption induced by MGB (not compensated by the intestinal adaptation) then RYGB (12).

Recent works have indicated that the gut microbiota may mediate some of the beneficial effects of bariatric surgery, and changes in the composition and diversity of the gut microbiota have been observed in the short and long term after RYGB in humans (13, 14), as well as after vertical sleeve gastrectomy and RYGB in mice (15). However, there are no investigations of these changes after MGB.

AIM OF WORK:

To evaluate in patients undergoing MGB or RYGB the effect of the treatment on enteric mal-absorption and microbiota profile in the first year after surgery.

Primary end point:
- To evaluate and compare RYGB vs MGB bile acids levels and microbiota profile shift at 6 and 12 months after surgery and its impact on metabolic and nutritional status after surgery.

Secondary end point:

- To measure GLP-1 plasma level (pg/mL) before and 12 months after surgery in MGB vs RYGB patients.

Other parameters:

1. To evaluate at 0 – 6 and 12 months after surgery the enteric mal-absorption profile in terms of lipid (Triglycerides, cholesterol, HDL and LDL), proteins (hemoglobin, albumin and ferritin), carbohydrates and micronutrients (minerals and vitamins) and nutritional status in subjects undergoing MGB vs RYGB.

2. To compare the effect of RYGB vs MGB surgery on total weight loss percent, excess weight loss percent (%EWL), excess BMI loss percent, major co-morbidities control and quality of life.

3. To evaluate the endoscopic /histological esophageal mucosal lesions secondary to bile reflux at 12 months in MGB vs RYGB patients

4. to evaluate energy expenditure at 0 and 12 months by Indirect calorimetry
Type of study:

Multicentric Prospective pilot comparative study.

Patients:

We had to evaluate Sample Size using bariatric patients population who underwent MGB or RYGB during 12 months (the follow up period of this study) in the three centres involved in the study, because of there aren’t others high methodological level studies or randomized trials or methanalysis about this argument (Primary end points and secondary and points). Our population is 285 patients: to obtain a confidence level of 95 %, an effect size of 0.5, Sample size is 90 patients (45 MGB and 45 RYGB) with an interval confidence of 8.56.
The sample size will be 90 cases (45 MGB and 45 RYGB) considering at least 20% drop-out at 1 year. (Tab 1-2)

Inclusion Criteria:

Obese patients with age 18-65 years old, BMI 40-55 kg/m^2^, non smokers, and candidates to primary MGB or RYGB without any concomitant surgeries except
hiatal hernia repair. Patients will be informed on the differences of the two procedures and the enrollment in the two study groups will be on the basis of patient choice.

Exclusion Criteria:

- Age ≤ 18 or ≥ 65 years old,
- BMI ≤ 40 or ≥ 55
- Smokers
- Any required associated surgical procedure except hiatal hernia repair
- Conversion to open surgery
- Postoperative complications requiring reoperation
- No compliance to the follow up schedule.
- Histological positivity to Helicobacter pylori previous or current
- Patients with different intraoperative measurement of the bowel distal to Treitz Ligament (tolerance plus or minus 10%).
- Free PPI 4 weeks before 6th month (after surgery)
- Corticosteroids, vitamin E, fish oil treatment in the previous two months
- Anti or pre-biotics treatment in the previous 2 months
- Chronic gastrointestinal diseases or syndromes (e.g., IBD, IBS)
- Previous bariatric surgery (intragastric balloon excluded).
- Previous resective bowel surgery
• Previous pancreatic surgery
• Previous hepato bilio pancreatic surgery
• Gallbladder gallstones

Methods:

Pre-and post-operative Assessment:

All patients will sign an informed consent (Sicob guidelines 2016). Study protocol will be approved by the Ethical Committee.

All patients will undergo routine blood laboratory investigations before surgery, 6 months and 12 months after surgery including: serum hemoglobin, glucose, HbA1c, cholesterol, triglycerides, LDL, HDL, T3, T4, TSH, GLP-1. Assessment of the nutritional status will be performed before 6- and 12 months after bariatric surgery by blood testing for serum iron, calcium, zinc and vitamins A, D, B12 and cortisol level.

A standardized meal test will be performed before, 6 and 12 months after bariatric surgery with 250 ml of liquid meal Oxepa®, (375 calories, 55.5% fat,
28% carbohydrate, 16.5% protein). Blood samples will be collected at baseline, 30, 60, 90 and 120 minutes after meal test in order to assess the concentration of the circulating lipids, GLP-1, bile acids (C4 precursor of bile acids) and FGF 19 (Fibroblast Growth Factor 19) levels. A stool sample will be collected at 0 – 6 – 12 months (It’s necessary to indicate date and time of defecation) stored at -80°C for targeted gut microbiota metagenomic (MG) study, lipids and proteins levels assessment. Every sample will be made by two parts: one for metagenomics evaluation and the other one for lipids and proteins levels assessment. Before fecal sampling, patients will be asked to fill out a three days food diary. All patients with vitamin D deficiency (< 20 ng/mL) will be supplemented before surgery with 10,000 IU of Vitamin D daily (16). Every value of nutritional status should be annotated in Winfood software. The selection criteria, work up, informed consent and schedule of the multidisciplinary follow up will follow the Guidelines of Italian Society for Obesity Surgery (SICOB) adopted in September 2016 (www.sicob.org).

Intra-operatively:

Standardization of the techniques will be guaranteed:

1. RYGB group

2. MGB group
All patients will have intraoperative measurement of the whole length of bowel from Treitz ligament to the ileocecal junction (expected range 6-8 m). The common limb will be therefore about 2/3 of total small bowel length.

Roux en Y gastric bypass

The steps of the standard double loop RYGB technique will be followed (17). The gastric pouch will be created 7 cm from the gastro-esophageal junction to obtain a volume of 30-40 ml, and the length of the alimentary limb will be 150 cm and 3.5-4 cm gastro-jejunostomy will be performed by linear stapler. The length of the biliopancreatic limb will be from 65 to 75 cm beyond the ligament of Treitz. The lengths of both limbs should carefully measured with a graduated instrument. The mesenteric defects will be closed.

Mini-gastric Bypass

The gastric pouch will be performed starting below the incisura angularis (transverse resection 4 cm) on the lesser curvature (18). Then the stomach will be transected against a 36 Fr bougie up to the gastro-esophageal junction. Then 1/3 of the small bowel will be excluded (approximately 200cms) and 3.5-4 cm gastro-jejunostomy will be performed by linear stapler.
Postoperative diet

After surgery and under the supervision of the registered dietitian, the diet will be transitioned from liquid diet for 2 weeks to pureed proteic diet for 1 week then soft solid proteic diet for 2 weeks then maintenance (regular food). All patients should have daily vitamin and mineral supplementation up one year after surgery following the chart below:

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>0,8 mg</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>11,65 mg</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>22,1 mg</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>324 mg</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>62,1 mg</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>0,00375 mg</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>120 mg</td>
</tr>
<tr>
<td>Vitamin D3</td>
<td>0,0075 mg</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>12 mg</td>
</tr>
<tr>
<td>Vitamin K1</td>
<td>0,0375 mg</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>0,2 mg</td>
</tr>
<tr>
<td>Pantothenic Acid</td>
<td>9 mg</td>
</tr>
<tr>
<td>Iron</td>
<td>21 mg</td>
</tr>
<tr>
<td>Magnesium</td>
<td>187,5 mg</td>
</tr>
<tr>
<td>Selenium</td>
<td>0,055 mg</td>
</tr>
<tr>
<td>Zinc</td>
<td>10 mg</td>
</tr>
</tbody>
</table>

Diet progression after bariatric surgery

1. **Liquid Proteic Diet (for 2 weeks)**

<table>
<thead>
<tr>
<th>Types of food</th>
<th>Calories/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced fat milk Lactose-free: 200ml</td>
<td>Protein: 52.32g (31.29%)</td>
</tr>
</tbody>
</table>
Fruit juice: 200ml | Fat: 14.52g (19.54%)
Light white yogurt: 125ml | Carbohydrate: 86.6g (51.58%)
Vegetable clear broth: 400ml | Kcal: 669
Oral protein supplementation: 400ml

2. Pureed Proteic Diet (for 1 week)

<table>
<thead>
<tr>
<th>Types of food</th>
<th>Calories/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced fat milk Lactose-free: 200ml</td>
<td>Protein: 62.4g (25.69%)</td>
</tr>
<tr>
<td>Light white yogurt: 125ml</td>
<td>Fat: 43.26g (40.07%)</td>
</tr>
<tr>
<td>Vegetable clear broth: 400ml</td>
<td>Carbohydrate: 85.52g (35.21%)</td>
</tr>
<tr>
<td>Oral protein supplementation: 400ml</td>
<td>Kcal: 971.65</td>
</tr>
<tr>
<td>Pureed lean beef, chicken or turkey, fish (or baby food meats): 80g</td>
<td></td>
</tr>
<tr>
<td>Pureed fruits (or baby food fruit): 100g</td>
<td></td>
</tr>
<tr>
<td>Soft cheese: 50g</td>
<td></td>
</tr>
<tr>
<td>Extra virgin oil: 10g</td>
<td></td>
</tr>
</tbody>
</table>

3. Soft Solid Proteic Diet (for 2 weeks)
<table>
<thead>
<tr>
<th>Types of food</th>
<th>Calories/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced fat milk Lactose-free: 200ml</td>
<td>Protein: 74.4g (30.41%)</td>
</tr>
<tr>
<td>Light white yogurt: 125ml</td>
<td>Fat: 32.66g (30.04%)</td>
</tr>
<tr>
<td>Oral protein supplementation: 400ml</td>
<td>Carbohydrate: 99.4g (40.60%)</td>
</tr>
<tr>
<td>Chopped lean meats (or Lean ground beef or turkey, or Deli-sliced turkey, breast, chicken, ham): 50g</td>
<td>Kcal: 978.65</td>
</tr>
<tr>
<td>Tuna fish, salmon or white fish: 50g</td>
<td></td>
</tr>
<tr>
<td>Pureed fruits (or baby food fruit) or canned fruits: 100g</td>
<td></td>
</tr>
<tr>
<td>Mashed or well-cooked vegetables: 100g</td>
<td></td>
</tr>
<tr>
<td>Extra virgin oil: 10g</td>
<td></td>
</tr>
</tbody>
</table>

4. Manteinance (Regular Food)
Reduced fat milk Lactose-free: 200ml
Biscuits: 30g
Oral protein supplementation: 200ml
Light white yogurt: 125ml
Lean red meat (or tender chicken, turkey and beef): 70g
Fish: 70g
Raw fruits without skins: 100g
Raw and cooked vegetables: 100g
Toasted breads or Low fat crackers: 30g
Extra virgin oil: 20g

<table>
<thead>
<tr>
<th>Protein</th>
<th>Fat</th>
<th>Carbohydrate</th>
<th>Kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.9gm (27.69%)</td>
<td>42.24gm (33.35%)</td>
<td>116.6 gm (40.9%)</td>
<td>1116.64</td>
</tr>
</tbody>
</table>

Postoperative follow up:

Total weight loss percent, excess weight loss percent (%EWL), excess BMI loss percent, co-morbidities control and quality of life, evaluated by The TSD-OC (SIO obesity-related disability) test (19). It is a questionnaire developed by the Italian Society of Obesity (SIO); it is made of 36 items divided into 7 sections: pain, rigidity, activities of daily living, housework, outdoor activities, occupational activities, and social life. Each question is answered using a visual
analogue scale, with a score ranging from 0 (absence of difficulty) to 10 (the highest degree of disability) for each item.

Data recording and variables analysis:

Basic demographic data are recorded as well as detailed information on history, preoperative data, surgical procedure, intra-operative findings, and postoperative course. The statistical analysis will be performed on the pooled groups. All statistical analyses will be performed using IBM SPSS v.20 software. P value of less than 0.05 will be considered statistically significant.

References

