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2. Introduction 
2.1. Background and rationale 

About one-third of all critically ill patients suffer from circulatory shock, which places them at increased 

risks of multi-organ failure, long-term morbidity, and mortality (1,2). Combinations of clinical, 

haemodynamic and biochemical variables are recommended for establishing the diagnosis and 

instigation of treatment (3,4). If necessary, more advanced and sequential haemodynamic 

assessments using critical care ultrasound (CCUS) as preferred modality are recommended (3-6). 

Clinical examination in the critically ill comprises frequent measurement of heart rate, blood pressure, 

body temperature, skin perfusion, urine output and mental status (3). Daily use of clinical examination 

(in any patient) for diagnostic purposes contrasts with the limited number and quality of studies, so 

that the level of evidence for use of clinical examination in the critically ill is considered best practice 

(3). Previous studies have suggested different prognostic or diagnostic variables and many studies have 

analysed single or dual variable associations, while no research has evaluated their additional value on 

top of the accepted predictors (7). The reason for inconsistency of results in these studies potentially 

originate from several methodological flaws, including improper research design, lack of confirmation 

cohorts, and power and sample size issues.  

The additive diagnostic and prognostic value of combinations of clinical, biochemical and 

haemodynamic variables remains to be established with a higher quality of evidence. These variables 

have never been evaluated collectively in a large, broad, prospective cohort of critically ill patients. 

Therefore, we established the Simple Intensive Care Studies I (SICS-I) with the aim to evaluate the 

diagnostic and prognostic value of a comprehensive selection of clinical and haemodynamic variables 

in the critically ill (7). 

Prospective registration of protocols of observational studies are promoted to prevent outcome 

reporting bias (8,9). Likewise, prospective publication of a detailed statistical analysis plan (SAP) is 

encouraged to prevent data-driven analyses (9-11).  

2.2. Objectives 

2.2.1. Objectives and research questions 

The objective of the SICS-I study was to establish a cohort with a dual aim: to evaluate the (1) diagnostic 

and (2) prognostic value of a comprehensive selection of clinical examination, haemodynamic and 

biochemical variables in the critically ill. More specific, the two research questions of the basic study 

were (1): which combination of clinical examination findings is associated with cardiac index measured 



Statistical analysis plan  Simple Intensive Care Studies-I 
 

5 

with CCUS? And (2): which combination of clinical examination, haemodynamic and biochemical 

variables is associated with 90-day mortality?  

In the basic study of the SICS we collected a broad number of clinical examination, haemodynamic and 

biochemical variables, and used CCUS to only measure cardiac output. The infrastructure and design 

enabled (temporarily) addition of sub-studies in which additional variables were collected. Research 

questions of the sub-studies all address the overall aim of the SICS-I cohort (table 1). 

2.2.2. Hypotheses 

The hypothesis of research question 1, i.e. the diagnostic study, are: 

• Null hypothesis: there is no true correlation between any single or a combination of clinical 

examination findings and cardiac index measured with CCUS 

• Alternative hypothesis: cardiac index measured with CCUS is associated with one or a 

combination of clinical examination findings 

The hypothesis of research question 2, i.e. the prognostic study, are: 

• Null hypothesis: clinical examination, biochemical and haemodynamic variables are not 

associated with 90-day mortality 

• Alternative hypothesis: clinical examination, haemodynamic and biochemical variables are 

associated with 90-day mortality 

2.2.3. Scope 

This SAP will be the guiding document for the analyses that will be conducted in the basic study. We 

intend to present the results of the two primary aims in separate manuscripts. All the aims and 

research questions of the sub-studies will be included in the appendix of this SAP, and we aim to 

present the SAPs of the sub-studies as an addendum in the future.  
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3. Study methods 
3.1. General study design and plan 

The SICS-I is a prospective cohort study which is conducted in the department of critical care of the 

University Medical Center Groningen (UMCG). The entire study was purely observational in design; no 

interventions were applied as part of the study protocol.  

The protocol of this study was published on the website of the department of critical care of our 

hospital before the start of the study (Project number: 201500144) and registered at clinicaltrials.gov 

(NCT02912624). This analysis plan has been written while data collection was ongoing, but before full 

access to the study database. For our design paper, we only extracted baseline data and we did not 

have access to the validated outcome data.  

3.2. Sample size, power and detectable difference 

There are no previous studies which included combinations of clinical examination, haemodynamic 

and biochemical variables into one model for estimation of cardiac output and mortality. This makes 

it difficult to calculate sample size based on previous literature. Alternatively, we made an estimation 

of the power of our multivariable models given the set sample size of our cohort.  

3.2.1. Diagnostic study 

We are planning our main analysis with 1075 patients in which we will regress their values of cardiac 

index against clinical examination findings. For this power calculation, we used the clinical examination 

variables urine output and capillary refill time an example (7). In our design paper, the SD of cardiac 

index was 0.99 and the SD of urine output was 0.98, with a slope estimate of 0.040 obtained when 

cardiac index was regressed against urine output. The SD of capillary refill time was 2.4, with a slope 

estimate of -0.045 obtained when cardiac index was regressed against capillary refill time. If the true 

slope of the line obtained by regressing cardiac index against urine output or capillary refill time is 

0.10, we will be able to reject the null hypothesis that this slope equals zero with probability (power) 

0.81 for urine output, and 1.00 for capillary refill time. The type I error probability associated with this 

test of this null hypothesis is 0.015 (see paragraph 6.6 below). 

3.2.2. Prognostic study 

We are planning our main analysis with 1075 patients and take skin mottling as example for our power 

calculation: in our design paper, 46% of the patients has skin mottling. If we assume a similar 

proportion in our total cohort, we have 495 patients with skin mottling and 580 without. Pilot data 

from our design paper indicate that the 30-day mortality proportion among controls is 0.18 (7). If the 

true mortality proportion for patients with skin mottling is 0.27, we will be able to reject the null 
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hypothesis that the mortality proportion for patients with skin mottling and control patients are equal 

with probability (power) 0.84. The type I error probability associated with this test of this null 

hypothesis is 0.015. We will use an uncorrected chi-squared statistic to evaluate this null hypothesis. 

3.3. Timing of final analysis 

Data cleansing and CCUS image validation will be performed upon completion of the 90-day follow-up 

of the last patient included in the study. The final analysis will be conducted hereafter. 

This statistical analysis plan was added to the study protocol at clinicaltrials.gov, before closure of the 

database and before any analyses had been conducted. Independent study monitoring was conducted 

in adherence to the Good Clinical Practice guidelines (10).  

3.4. Timing of outcome assessments 

Follow-up on all-cause mortality was conducted at 1 November 2017, i.e. 90-days after the inclusion 

of the last patient.  
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4. Statistical principles 
4.1. Multiplicity 

The diagnostic and prognostic basic study and each sub-study consist of one primary outcome and one 

or more secondary, exploratory outcomes. We will encounter multiplicity issues due to the multiple 

primary outcomes that are tested for significance in the same cohort. The SICS-I cohort addresses six 

different primary outcomes (table 2, last column); two primary outcomes of the basic study (diagnostic 

and prognostic), and four additional outcomes in the nine sub-studies.  

We will apply an adjustment for multiplicity based on the total numbers of different primary outcomes 

tested. Our cohort mainly addresses haemodynamic research questions, so that most outcomes will 

probably be positively correlated. Therefore, a Bonferroni adjustment of the P-value might be too 

conservative. We chose for multiplicity adjusted thresholds by following the pragmatic approach 

stated by Jakobsen et al. (12). The authors suggested that the ‘true’ threshold lies somewhere between 

the unadjusted threshold (most often 0.05) and the Bonferroni adjusted threshold. Where in this 

interval the ‘true’ threshold is placed is dependent on the correlation between the outcomes, if two 

outcomes are perfectly correlated (a correlation coefficient of 1) no adjustment of the threshold for 

statistical significance is needed, if two outcomes are totally independent (a correlation coefficient of 

0) a full Bonferroni adjustment is needed. Therefore, Jakobsen et al suggest “dividing the pre-specified 

P-value threshold with the value halfway between 1 (no adjustment) and the number of primary 

outcome comparisons (full Bonferroni adjustment)” as such an adjustment will come closer to the 

‘true’ statistical significance level than the ‘extreme thresholds’ in a majority of situations (12). The 

corresponding formula is: 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑜𝑜𝑟𝑟 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 =
𝛼𝛼

�𝑚𝑚 + 1
2 �

  

Wherein:  

• α is the unadjusted threshold for significance, usually 0.05 

• m is the number of primary outcomes or tests (used) in the same cohort (in this case: six) 

The threshold for significance in the SICS-I cohort will be: 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑜𝑜𝑟𝑟 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 =
0.05

�6 + 1
2 �

= 0.0143 ≈ 0.015 
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4.2. Statistical significance and confidence interval 

As calculated in 4.1, we will consider a P < 0.015 as statistically significant for our primary outcomes. 

When we find a 0.015 ≤ P ≤ 0.05, we will consider this association of dubious significance and will 

emphasise the increased chance of a type I error. Results will be presented with their values (e.g. 

regression coefficients, odds ratios, etc.) with 98.5% confidence intervals. 

4.3. Adherence and protocol deviations 

4.3.1. Definitions of protocol deviations 

Protocol deviations are defined when the activities on a study diverge from the local institutional 

review board-approved protocol, however without significant consequences (13).  

4.3.2. Protocol deviations to be summarised 

We opted for the following subgroup analyses in our study protocol: different types of shock 

(distributive, obstructive, hypovolemic, cardiogenic), CVVH, heart failure by any cause, myocardial 

infarction, atrial fibrillation or surgery versus no-surgery patient groups. 

We decided to replace these proposed subgroup analyses by the subgroups described in section 6.3. 

We believe that these subgroups agree better with the perspective from which a physician approaches 

a critically ill patient.  
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5. Study population 
5.1. Screening data 

Eligible patients who were not included will be compared to included patients by comparing their 

general characteristics (age, sex), and SAPS-II and APACHE-IV scores.  

5.2. Eligibility 

All eligible patients were included on their first day of ICU admission. Inclusion in the basic study 

consisted of a protocolised clinical examination and subsequent CCUS. The attending ICU physician 

estimated the expected duration of ICU treatment. Patients expected to stay beyond 24 hours who 

were eventually discharged within 24 hours were included in our main analyses.  

5.2.1. Inclusion criteria 

• Emergency admission 

• Expected stay > 24 hours 

5.2.2. Exclusion criteria 

• Age < 18 years 

• Planned admission (either after surgery or for other reasons) 

• Unable to obtain informed consent, e.g. refusal, acute psychiatric disorders, mental 

retardation, serious language barriers 

• Continuous resuscitation efforts or mechanical circulatory support 

5.3. Recruitment 

A flow diagram will be used to visualise the flow of patients. In this flow diagram, we will report the 

population from which the eligible patients were selected, reasons for exclusion of eligible patients, 

and how many CCUS images and measurements were validated (diagnostic study) or how many 

patients died (prognostic study). See figure 1 for an example of our flow diagram.  

5.4. Withdrawal/follow-up 

5.4.1. Level and timing of withdrawal 

The withdrawal rate of the SICS-I is below 2%, since it was an observational study in which no 

interventions were applied.  

Following hospital regulations, patients or their legal representatives were informed and were 

excluded if they refused to participate. Withdrawal from our study occurred when informed consent 

was obtained from the patient’s legal representative, but the patient refused at a later time.  
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5.4.2. Reasons and details of withdrawal 

Reasons for withdrawal or lost to follow-up will be reported in the manuscript and/or flow diagram. 

Our observational study consists of a one-time measurement (snapshot), so that drop-outs or lost to 

follow-up reasons are unrelated to the study.   

Patients who were lost to follow-up are considered alive until their last outpatient visit or hospital 

discharge, and were censored thereafter.   

5.5. Baseline patient characteristics 

5.5.1. Collected baseline patient characteristics  

The cohort study was designed to register a set of clinical examination, biochemical and 

haemodynamic variables in each included patient. We extracted baseline demographic data from the 

Dutch National Intensive Care Evaluation (NICE) registry and collected clinical data by protocolised 

clinical examination and CCUS. We obtained the biochemical values from arterial blood gas analyses 

closest to study inclusion. Table 2 provides an overview of all collected variables and indicates for each 

variable whether it is categorised as a clinical examination, haemodynamic, or biochemical variable.  

5.5.2. Descriptive summarization of baseline patient characteristics 

We will list general patient characteristics in a baseline characteristics table. Data will be presented as 

mean with standard deviation (SD) when normally distributed or as median with interquartile range in 

case of skewed data. Dichotomous and categorical data will be presented in proportions. Normality of 

the data will be assessed using P-P plots, Q-Q plots, and histograms. Linearity will be assessed using 

scatter plots. Differences between continuous variables will be assessed using Student’s t-tests or 

Mann-Whitney-U test, depending on normality, whereas the Chi-squared test will be used for 

categorical values. For repeated measurements, we will use the paired t-test for normally distributed 

continuous data, the Wilcoxon signed-rank test for skewed continuous data, and the McNemar test 

for dichotomous data. 

5.6. Assumed confounding covariates 

The majority of variables measured in our study are inevitably correlated, as most relate to the 

haemodynamic status of a patient. While definitions have been recorded in the protocol, the values of 

the variables can be confounded by unmeasured factors, such as environmental, genetic, or 

psychological influences. Therefore, we provide an example of possible confounding variables and 

categorise these into ‘measured’ and ‘unmeasured’.  
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● Cardiac output and clinical examination of the central haemodynamics (i.e. heart rate, blood 

pressures, central venous pressure) are assumed to be confounded by: 

○ Measured: body surface area (therefore we will use cardiac index), quality of 

measurements (therefore data will be validated), distributive shock as the underlying 

pathology, administration of inotropes and/or vasopressors, administration of 

propofol (negative inotropic effect), mechanical ventilation including ventilation 

pressures 

○ Unmeasured: stress, pain, anxiety 

● Urine production is assumed to be confounded by: 

○ Measured: history of chronic renal failure, distributive shock as the underlying 

pathology 

○ Unmeasured: total amounts of fluids administered 

● AVPU score is assumed to be confounded by  

○ Measured: sedation (propofol, midazolam)  

● Clinical examination of peripheral perfusion (i.e. mottling, peripheral capillary refill times, 

peripheral temperatures) are assumed to be confounded by: 

○ Measured: heating blankets, distributive shock as the underlying pathology, cardiac 

output, administration of inotropes and/or vasopressors, administration of propofol 

(vasodilation)  

○ Unmeasured: regular blankets, environmental temperature, peripheral arterial 

disease.  

● Mortality proportion is assumed to be confounded by:  

○ Measured: age, comorbidities, and several other variables that are all embedded in 

the simplified acute physiology score II (SAPS-II) score 

○ Unmeasured: cause of mortality (e.g., death due to multi-organ failure or failure to 

wean, a patient’s or family’s personal wishes regarding the extent of ICU treatment. 

This will, however, always be a mix of causes). 

We acknowledge that there will be residual confounding in our dataset due to the presence of 

unmeasured confounding, some of which is listed above. However, the actual measured variables 

reflect daily practice and so, is assumed to reflect similar confounding in daily assessments of the 

haemodynamic status of ICU patients. 
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6. Analysis 
6.1. Outcome definitions 

6.1.1. Primary and secondary outcomes 

The research questions and the design of the study have been published (7). We elaborate on the 

outcomes of the basic study below and described the primary outcomes of each sub-study in appendix 

1. 

The outcomes of research question 1, i.e. the diagnostic study, are:  

• Primary: the association of a single or combination of clinical examination findings with cardiac 

index measured by CCUS 

• Secondary: the diagnostic test accuracy of a single or a combination of clinical examination 

findings to diagnose a low, normal and high cardiac index 

• Secondary: the association and diagnostic test accuracy of a single or combination of clinical 

examination findings with cardiac index in clinically different patient subgroups 

The outcomes of research question 2, i.e. the prognostic study, are:  

• Primary: the association of all measured clinical examination, biochemical and haemodynamic 

variables with 90-day mortality  

• Secondary: the association of clinical examination, biochemical and haemodynamic variables 

with 7-day and 30-day mortality 

• Secondary: the association of clinical examination, biochemical and haemodynamic variables 

that are not visible to caregivers with 90-day mortality 

• Secondary: the association of clinical examination, biochemical and haemodynamic variables 

with 90-day mortality in clinically different patient subgroups 

6.1.2. Measurement and calculation of outcomes 

For the diagnostic study we calculated cardiac index, which was derived from cardiac output. Cardiac 

output has been measured with the cardiac probe M3S of M4S with default cardiac imaging setting of 

the General Electric Vivid-S6 mobile ultrasound machine. Two views were obtained: the parasternal 

long axis (PLAX) and the apical five chamber view (AP5CH). The PLAX was used as the primary view to 

measure the left ventricular outflow tract (LVOT) diameter. The AP5CH view was used to measure the 

velocity time integral (VTI) using the pulse wave Doppler signal in the LVOT. Cardiac output was 

calculated on the ultrasound machine according to the formula:  
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𝐶𝐶𝑠𝑠𝑟𝑟𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (
𝐿𝐿
𝑚𝑚𝑠𝑠𝑠𝑠

) = ℎ𝑟𝑟𝑠𝑠𝑟𝑟𝑜𝑜 𝑟𝑟𝑠𝑠𝑜𝑜𝑟𝑟 ∙ 𝑉𝑉𝑇𝑇𝑉𝑉 ∙ 𝜋𝜋 ∙ �
1
2
∙ 𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇�

2
 

At a later time, the images and measurements were validated by technicians from an independent 

core laboratory, whom were blinded for all other measurements and outcomes. 

We used cardiac index instead of cardiac output for interindividual comparisons. Cardiac index is the 

cardiac output adjusted for body surface area: 

𝐶𝐶𝑠𝑠𝑟𝑟𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑜𝑜𝑟𝑟𝑖𝑖 (
𝐿𝐿
𝑚𝑚𝑠𝑠𝑠𝑠
𝑚𝑚2 ) =

𝐶𝐶𝑠𝑠𝑟𝑟𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐵𝐵𝑜𝑜𝑜𝑜𝐵𝐵 𝑟𝑟𝑜𝑜𝑟𝑟𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟 𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠

 

Where body surface area was calculated with the DuBois formula (14):  

𝐵𝐵𝑜𝑜𝑜𝑜𝐵𝐵 𝑟𝑟𝑜𝑜𝑟𝑟𝑓𝑓𝑠𝑠𝑠𝑠𝑟𝑟 𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠 = 0.007184 ∙ 𝑊𝑊𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜0.425  ∙  𝐻𝐻𝑟𝑟𝑠𝑠𝑠𝑠ℎ𝑜𝑜0.725 

Cut-offs for a low cardiac index for critically ill patients are inconsistent (15). Haemodynamic criteria 

to diagnose cardiogenic shock vary from a cardiac index of 1.8 to 2.5 L/min/m2 (16-19). A cardiac index 

below 2.2 L/min/m2 is often used to diagnose a low cardiac output syndrome after cardiac surgery 

(20), whereas a large clinical trial used a cut off below 2.5 L/min/m2 in patients with acute lung injury 

(19). These criteria, however, apply to patients with heart failure or after cardiac surgery. There 

currently is no consensus on how much cardiac index is low, normal or high for the critically ill patient. 

In the secondary outcome of our diagnostic study, we will both use a cut-off of 2.2 and 2.5 L/min/m2 

for a low, and a cut-off of 4.0 and 4.5 L/min/m2 for a high cardiac index. 

For the prognostic study we obtained follow-up on all-cause mortality from the municipal personal 

records database. Analysis of mortality will be performed using time-to-event data (patients were 

censored at 90-days of follow-up). 

6.2. Analysis methods 

6.2.1. Correlations 

We will use the Pearson r correlation and Spearman correlation coefficient rho (r) to evaluate the 

degree of relationship between variables. For normally distributed variables, we will use the Pearson 

r correlation with 98.5% confidence interval upon checking for linearity and homoscedasticity, while 

in case of skewed, ordinal data, the degree of association between variables will be quantified using 

Spearman correlation coefficient rho (r). We will use Cohen’s d to evaluate the correlation coefficient 

and assess the strength (or effect size) of the relationships, where a correlation coefficient between 



Statistical analysis plan  Simple Intensive Care Studies-I 
 

15 

0.10 and 0.29 will represent a small association, between 0.30 and 0.49 a medium association, and a 

coefficient of 0.50 and above a large association. 

6.2.2. Continuous and dichotomous outcomes (diagnostic study) 

We will conduct a least-squares linear regression analysis for continuous dependent variables and a 

logistic regression for dichotomous dependent variables. A univariable regression analysis will be 

conducted on 17 clinical examination findings with cardiac index as the dependent variable. A 

univariable regression analysis will be conducted on all variables and a p < 0.25 will be used for 

inclusion in the multivariable model. As there are no previous studies that include (a combination of) 

all available clinical examination variables into one model estimating cardiac index, we will not include 

any variable on a theory driven basis. We will construct the multivariable model using forward stepwise 

regression by adding blocks of variables. In case of a multivariable linear regression model, we will 

construct a kernel density plot to assess normality of the residuals and check the homogeneity of 

variance by plotting the residuals versus the fitted values. We will use the variance inflation factor (VIF) 

to check for multicollinearity; as a rule of thumb, we will assume multicollinearity when a variable has 

a VIF-value greater than 10. If the assumptions are not met, we will use an ordinal regression analysis. 

6.2.3. Time-to-event data (prognostic study) 

Analysis of mortality will be performed using time-to-event data (patients were censored at 90-days 

of follow-up). Categorical variables will be analysed using the log-rank test and continuous variables 

will be assessed using a univariable Cox proportional hazard regression analysis. Analysis of mortality 

proportion will be presented by Kaplan-Meier survival curves when independent variables are 

dichotomous or categorical. A univariable Cox regression analysis will be conducted on 22 clinical 

examination, haemodynamic and biochemical variables with 90-day mortality as the dependent 

variable. Covariates with a of p < 0.25 in the univariable analysis will be included in the multivariable 

model. We will include the SAPS-II score in our multivariable Cox regression model of 90-day mortality. 

The SAPS-II is a predictive score for in-hospital mortality and includes seventeen covariates among 

which age, haemodynamic and biochemical variables, and presence of metastatic or haematological 

cancer (21). The proportionality assumption will be tested by using the Schoenfeld and scaled 

Schoenfeld residuals. We will test the proportionality of the model as a whole and the proportionality 

for each predictor and reject proportionality in case of significant test findings (p<0.05). We will plot 

graphs of the scaled Schoenfeld assumption, where horizontal lines in the graph indicate that the 

proportionality assumption is not violated. We will also construct log-log plots, where two parallel lines 

indicate that proportionality was not violated. The goodness of fit of the final model will be evaluated 
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by using the Cox-Snell residuals. In our Cox regression models, at least 15 events are necessary for each 

variable included in the final model (22,23). 

6.2.4. Validation (both) 

Because of the fixed sample size of our study, we will use bootstrapping validation to assess the 

accuracy of our model. We will randomly select 1075 individuals from the dataset with replacement, 

build our model on the bootstrapped sample and validate it on the original data. We will repeat this 

process 100 times and include a variable into our final model if it was significant in at least 80 models. 

We will still emphasise the hypothesis-generating aspect of our findings. We aim to validate our 

findings in an independent cohort in the future. 

6.3. Sensitivity and subgroup analyses 

In the diagnostic study, we will conduct a sensitivity analyses on the subgroup of patients in which the 

quality of the cardiac output measurements by CCUS by the core laboratory is considered ‘good’.  

In the prognostic study, we will conduct a sensitivity analyses on different follow-up times of mortality: 

we will also use mortality at 7 and 30 days. 

If the sample size permits, we will conduct subgroup analysis in different subpopulations. We will 

create the following subgroups in the basic study and test both our prognostic and diagnostic 

hypotheses on:  

● Subgroup 1: subdivide the population into three groups: no shock, shock associated with a low 

cardiac output, shock associated with a high cardiac output. 

● Subgroup 2: subdivide the population by underlying pathologies that could influence the 

haemodynamic measurements in a patient: Patients admitted due to cardiac arrest, heart 

failure, after liver transplantation or liver failure, central nervous system pathologies, and 

septic shock. We will identify clinical subgroups by using variables such as APACHE-IV 

admission diagnoses, confirmed infection, cardiac arrest from the Dutch National Intensive 

Care Evaluation (NICE) registry. The NICE registry contains good quality and complete data due 

to several assurance quality procedures (24). Patients with septic shock are identified using 

the quick Sequential Organ Failure Assessment (qSOFA) score combined with a confirmed 

infection according to the latest definition (25). 
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6.4. Missing data 

6.4.1. Reasons for missing data 

In our design paper, we extracted invalidated baseline data and obtained some insight in the 

missingness of our variables (7). We expect to have no missing data for the variables blood pressure, 

heart rate, urine output, central temperature, arterial haemoglobin and lactate levels. Some data will 

be unobtainable for the variables mottling score, capillary refill times and peripheral temperatures. 

Reasons for unobtainability included a dark or icteric skin colour (mottling and capillary refill times) 

and compression stockings (capillary refill time at the knee and peripheral temperature at the dorsum 

of the foot). Cardiac output measurements by CCUS were performed in all included patients. CCUS 

could not be performed in some patients due to various reasons obstructing the echocardiographic 

window, such as thoracic drains, post-surgical incisions, wounds or (subcutaneous) emphysema. Most 

probably, the missing values depend on other observed data (e.g. peripheral temperature could not 

be measured in patients under a warming blanket), and we consider these missing values as missing 

at random (MAR). If there is no correlation between the missing values and other observed data, i.e. 

Little’s test is not statistically significant (P>0.05), missing values are considered missing completely at 

random (MCAR) (26). 

6.4.2. Imputation method 

If our missing values are missing at random, primary analyses will be performed with imputation for 

missing data using multiple imputations (MI). A threshold of up to 50% missing data will be considered 

acceptable for use of MI. Robustness of conclusions will be checked by secondary sensitivity analyses 

including available data and imputation of worst-best and best-worst case scenarios covering also 

missing not at random (MNAR) scenarios. We will use multiple imputation using the MI impute chained 

equation command in SPSS. We will compare the imputed values with the observed values to establish 

the validity of the imputed data; we will check whether the imputed values are realistic or if they 

require a cut-off to avoid unrealistic negative values. The imputation will be repeated 20 times and 

Rubin’s rule will be used to combine variable estimates and standard errors (27).  

If our missing values are MCAR or missingness is confined to the outcome variable, we will use 

complete case analysis for our primary analyses. 
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6.5. Additional analyses: diagnostic test accuracy 

6.5.1. Relationship between clinical examination signs and cardiac index 

There is currently no consensus on how much cardiac index is sufficient for the critically ill patient. 

Different studies used differing cut-offs for a low cardiac index (15). Therefore, we will use 2 cut-offs 

for both a low and high cardiac index:  

1. Cut-offs for a low cardiac index: 2.2 and 2.5 L/min/m2 

2. Cut-offs for a high cardiac index: 4.0 and 4.5 L/min/m2 

We will conduct a logistic regression with the dichotomised cardiac index and an ordinal logistic 

regression with a categorical cardiac index as the dependent variable. A univariable analysis will be 

conducted on all dependent (clinical examination) variables and a p < 0.25 will be used for inclusion in 

a multivariable model. Calibration of our multivariable model will be checked with a Hosmer-

Lemeshow test and by plotting observed proportions of cardiac index against the predicted risks of 10 

equally sized groups. We will identify the cardiac index cut-off(s) where clinical examination has the 

best discriminative value based on the area under the receiver operating characteristic (ROC)-curves.  

Based on the multivariable logistic regression findings, we will construct a risk score for cardiac index 

based on the coefficients in the model. Scores will be calculated by dividing all coefficients by the 

lowest coefficient or by transforming all coefficients so that the score is easy to count. 

6.5.2. Diagnostic test evaluation 

Depending on the optimal and number of cut-offs (i.e. low or normal cardiac index or low, normal and 

high cardiac index), we will display our diagnostic test in a 2 x 2 table, 2 x 3, or a 3 x 3 table (28,29). An 

example table can be found below. In a 3 x 3 table, data will be ordinal and we will give an indication 

of the agreement with the weighted kappa (30).   

  Cardiac index cut-offs 

  Low (< 2.5) Normal (2.5 to 4.5) High (> 4.5) 

 

EXAMPLE: 

Capillary refill 

time 

Prolonged True positive (a) False positive (d) False positive (d) 

Normal False normal (b) True normal (d) False normal (b) 

Shortened False negative (c) False negative (c) True negative (d) 
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Subsequently, we will calculate sensitivity, specificity, positive and negative predictive values and 

positive and negative likelihood ratios. Because this can only be calculated in 2 x 2 tables, we will cut 

the 3 x 3 table in low/normal and normal/high cut-offs: 

   Cardiac index below/above x L/min/m2 

  Yes No 

Clinical examination  

finding(s) present 

Yes True positive (a) False positive (c) 

No False negative (b) True negative (d) 

Explanation: x can be 2.2, 2.5, 4.0 or 4.5 L/min/m2. 

In addition, we will also calculate the 98.5% confidence intervals. Below we interpret each diagnostic 

test parameter for our diagnostic study. 

• True positive: the number of patients with a low cardiac index who also had clinical 

examination signs indicating hypoperfusion.  

• False positive: the number of patients without a low cardiac index, but with clinical 

examination signs indicating hypoperfusion.  

• True negative: the number of patients without a low cardiac index and with clinical 

examination signs indicating a normal perfusion.  

• False negative: the number of patients with a low cardiac index, but with clinical examination 

signs indicating a normal perfusion.  

• Sensitivity: the probability of the presence of a low cardiac index when there were clinical 

examination signs indicating hypoperfusion.  

• Specificity: the probability of the absence of a low cardiac index when clinical examination 

signs indicating a normal perfusion.  

• Positive predictive value: the probability that a low cardiac index is present given the clinical 

examination signs indicate hypoperfusion.  

• Negative predictive value: the probability that a low cardiac index is absent given the clinical 

examination signs indicate a normal perfusion.  

• Positive likelihood ratio: the ratio between the probability of clinical examination signs 

indicating hypoperfusion among the patients with a low cardiac index, relative to the patients 

with the same test result but a normal cardiac index.  
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• Negative likelihood ratio: the ratio between the probability of clinical examination signs 

indicating normal perfusion among the patients with a low cardiac index, relative to the 

patients with the same test result but a normal cardiac index. 

• ROC curve: "The receiver operating characteristic" curve. Grayscale image sensitivity as a 

function of (1 - specificity) for each possible cut-off. Most useful for comparison of two 

methods. 

• Area under the ROC curve: displays the accuracy of the test and will be classified according to 

the following point system: 

o 0.90 to 1.0 = excellent  

o 0.80 to 0.90 = good 

o 0.70 to 0.80 = fair 

o 0.60 to 0.70 = poor 

o 0.50 to 0.60 = fail 

6.6. Additional analyses: machine learning  

6.6.1. Model development: algorithms, training and testing 

We will use machine learning (ML) algorithms to generate hypotheses, validate observations of 

conventional models, and to unravel heterogeneity. Predictive modelling using ML algorithms requires 

the original data be split into two smaller sets, one for training and one for testing. We randomly split 

the original data into two groups with, respectively, 70 to 80% and 20 to 30% of the individuals. The 

split before further division of the training data into several folds for cross-validation virtually assures 

no information leakage is possible, making the training method virtually completely unbiased.  

The training set will then be further divided into k similarly sized partitions (k-folds). By doing this, we 

divide the training set each time into k parts and then use each of these k parts once as testing dataset 

for the model trained on the other k-1. During this process, the hyper-parameters defining the model 

are optimized, with the performance measures (AUROC, accuracy, or a measurement of error, 

depending on whether the analysis is regression or classification) being presented as the average of 

those k runs of the algorithm. Additionally, this process can be repeated r number of times, where the 

average of r error terms obtained after performing k-fold cross validation r times is calculated.   

This will be done for each of the algorithms, so as to determine the optimal values of all modifiable 

hyper-parameters of each model and maximize the models’ performance metrics (usually the Area 

Under the Receiver Operating Characteristic curve (AUROC) for classification). When deemed 
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necessary, an additional post-hoc sensitivity analysis will be done to refine the parameters beyond 

what the tuning functions in R allow. 

Three algorithms will primarily be used to develop the models: Gradient Boosted Machine, Support 

Vector Machine, and Random Forest. A summary of the necessary hyper-parameters for each of the 

algorithms is provided in table 3. Finally, an Ensemble Model will be built consisting of the best models 

build with each of the three algorithms. The choice for these three models is based on them having 

previously been shown to have similar, high performances in datasets with sparse data, despite the 

different structure of each algorithm (31). All three algorithms are not very sensitive to over-fitting (i.e. 

tend not to over-fit), but achieve this in different ways, where SVM is a disadvantage compared to the 

other two, since it attempts to minimize over-fitting for each kernel (i.e. type of model), but the user 

is still left to determine which kernel best fits the data, which can be error prone (32). In addition, both 

GBM and Random Forest are tree-based algorithms which allow for almost unprocessed data to be 

analysed. While SVM requires significant pre-processing, and is computationally slower than the other 

two, its high performance and the possibility to adapt a Radial Basis Function to almost all high-

dimensionality problems makes it an easy-to-use, rather interpretable algorithm.  

6.6.2. Gradient Boosting Machine 

The Gradient Boosting Machine (GBM) algorithm is perhaps the strongest and the one with potentially 

the most interesting clinically-oriented properties. In GBM, new models are consecutively fitted to the 

training data set in order to provide a more accurate estimate of the outcome variable (33). By 

combining multiple decision trees, and increasingly weighting the “difficult to predict” events to a 

greater degree, GBM will fit k models (one per fold of the cross-validation process we defined earlier) 

to compute the error estimate, before making a final model using all of the data. 

Our GBM model was tuned during training for four hyper-parameters: n.trees (the number of 

iterations to be generated by the algorithm), n.minobsinnode (the minimum number of observations 

in the terminal nodes of a tree (see Fig. 5)), interaction depth (defines the number of terminal nodes 

or leaves of a tree), and shrinkage (34). This parameter controls the learning rate of the algorithm by 

controlling the rate at which the boosting algorithm descends the error surface (35,36) . 

6.6.3. Support Vector Machine 

A Support Vector Machine (SVM) is a class of supervised learning algorithms often used in classification 

problems such as this. It classifies data points into two different classes (e.g. “Alive” or “Deceased”) by 

taking these points in a multidimensional space and separating them by means of the hyperplane that 

best differentiates between the two groups (37). Due to the great variation in range of our numeric 
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predictor variables in datasets with patient data, the data will be scaled and centred, to prevent 

attributes with a greater range dominating those with smaller ranges. Since SVMs don’t allow for 

categorical variables, further processing is needed to encode all categorical variables into dummy 

variables (binary variables (0 or 1) which indicate the absence or presence of the effect of some 

parameter). After this, variables with zero or near-zero variance are excluded.  

The SVM model will be tuned during training for two hyper-parameters: sigma (σ) and cost (C) (34). 

The best values for various pairs of exponentially growing C and sigma values will be determined during 

training by means of a “grid-search” using cross-validation (37,38). In addition, due to the expected 

dimensionality of the classification problem, we will use a Radial Basis Function (RBF) kernel to allow 

the hyperplane boundary between classes to be non-linear. Tuning of sigma is required in this context 

to determine the influence of a single training example on the overall prediction. For instance, an 

excessively large value would constrain the model back to linearity (37). Similarly, cost will control the 

misclassification tolerance by forcing the SVM towards a harder margin or allowing a smoother (i.e. 

softer) decision boundary and an increased probability of misclassification. 

6.6.4. Random Forest (figure 3) 

A Random Forest (RF) is an ensemble-based technique that attempts to minimise the limitations of 

classical decision trees by building multiple trees from a random subset of the original training data 

and considering only a random number of predictor variables at each split, instead of trying all the 

variables at every split, before aggregating their results (39-41). 

As a learning method, it is more robust to overfitting than normal decision trees, which is especially 

important in relatively small training sets, and shows good predictive performance despite 

considerable noise (37). Furthermore, it requires virtually no pre-processing, running efficiently even 

on datasets with a large number of input variables, categorical and continuous.  

Hyper-parameter optimization is done by defining a parameter-value grid with a wide range of trees 

and multiple values for mtry. The best model is selected either by comparison of the AUROCs obtained 

for each combination of these two parameters, or according to Kuhn and Johnson’s threshold-based 

approach for datasets with imbalanced outcome classes (42). 

6.6.5. Ensemble models 

Lastly, an ensemble model will be built that combined the best model of each of the three base learner 

algorithms. Using an ensemble model is expected to increase model robustness, when compared to 

using individual models, which is achieved by incorporating the predictions from all the base learners. 
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The final predictions are then given twice, one label per type of ensemble: for the weighted ensemble, 

based on the weights defined for each model, the weighted predicted probabilities are calculated, and 

a label (e.g. “Alive” or “Deceased”) is given to a case based on the defined threshold (of 0.50 in this 

case); for the majority vote ensemble, the label, and not the predicted probabilities, of each model are 

taken, and the class with at least two-our-of-three votes is attributed to a certain patient.   

6.6.6. Model testing 

All final models (for each algorithm or for the ensemble model) will be fitted to the testing dataset, 

resulting in a prediction of each patient’s individual probabilities of belonging to either of the outcome 

classes (“Alive” or “Deceased”). Based on a defined threshold, these probabilities will then be 

converted to a binary label, and the AUROC and other additional performance measures for the models 

will be calculated for the testing dataset. 

6.6.7. Principal Component Analysis 

The robust implementation of all three algorithms used to model ICU mortality prediction in the SICS-

I database in the caret package used in R, allows us to obtain an importance-based ranking of the 

variables, with respect to their ability to predict the outcome variable. This feature is potential 

applicable in clinical practice and provides an intuitive way to reduce the dimensionality (i.e. number 

of input variables). However, Principal Component Analysis (PCA) can be an even better tool to shed 

light on parameter prioritization for data-driven studies in the ICU.  

PCA is an adaptive data analysis technique for reducing the dimensionality of large datasets, thus 

increasing interpretability, while simultaneously minimizing information loss. It identifies the largest 

sources of variation in a dataset and constructs a lower dimensional subspace of the data by creating 

new uncorrelated variables, or principal components (PCs), that successively maximize variance (43). 

To form each additional PC, it seeks a second linear combination that can explain the maximum of the 

remaining variance. For each PC, variable loadings are then provided, which represent the contribution 

of each original variable in explaining the variance in each of the PCs. Unlike predictive modelling, PCA 

is a descriptive tool, rather than inferential or predictive, which can partly substantiate or explain the 

predicted findings.   

With iterative PCA, a variation on normal PCA, scores for both variables and individuals of complete or 

incomplete datasets are returned, providing an idea of the contribution of a certain variable, or a 

certain individual, to the total variance in that dataset (44). PPCA and BPCA are both iterative 

techniques with a probabilistic basis, which have been shown to perform better than traditional PCA 

when applied to data with missing values, especially as the missingness level increases (43). Using the 



Statistical analysis plan  Simple Intensive Care Studies-I 
 

24 

The R packages factoextra (45) and factoMineR (46), the PCA results are presented graphically by 

means of a graphic showing the distribution of individuals across a plane containing two PCs, a 

correlation circle graphic with the most explanatory variables or factors for each PC, and the PCA biplot 

showing a combination of both for clarity. The squared cosine (cos2) of the most relevant individuals 

and variables is also given, as is their percentual contribution (47).  

Due to the heterogeneity in variable scaling (for example, the maximal urine per hour was 600 ml/hour, 

the highest value for haematocrit being 0.53, and 11.5 mmol/L for haemoglobin), all variables were 

centred and scaled (i.e. subtracting the variable mean, and dividing the value by the standard 

deviation), so as to standardise the variance of the dataset, allowing for comparability between 

variables with different scales and units (48). 

6.7. Statistical software 

Except for the predictive and PC analyses, statistical analyses will be performed using SPSS version 23 

(IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, New York: IBM 

Corp) and Stata version 15.1 (StataCorp. 2017. College Station, Texas: StataCorp LLC). 

All predictive and PC analyses were performed using R versions 3.3.3 and 3.5.0 Pre-Release (The R 

Foundation for Statistical Computing; Vienna, Austria). 
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7. Discussion 
The overall aims of the SICS-I study are to address the diagnostic and prognostic value of clinical 

examination findings, haemodynamic variables, and biochemical values. This broad aim resulted in 

multiple research questions and hypotheses, which results in many variables to be tested repetitively. 

We drafted this SAP to avoid outcome reporting bias and data-driven results. This plan only addresses 

the hypotheses of the basic study which is, according to our sample size calculations, able to detect a 

5% difference for the primary outcomes. Results of the sub-studies will be published as separate 

manuscripts and SAPs will be written before analysing their hypotheses.  

We strive to eliminate inflated type I error rates by adjusting our primary outcomes for different 

confounders. We also strive to reduce the chance of a type I error due to multiplicity by pragmatically 

adjusting the P-value as proposed by Jakobsen et al. (12). This adjustment for multiplicity is based on 

the number of different primary outcomes of the basic study and sub-studies. In each manuscript, we 

will identify and discuss dubious significant findings. Although we will adjust for multiple testing, we 

will emphasise the hypothesis-generating aspect of results.  

Our diagnostic hypotheses will be tested in two steps: first, we will investigate the association of 

cardiac index with clinical examination variables and second, we will investigate at which cardiac index 

the clinical examination findings of hypoperfusion become apparent. We aim to present a cut-off for 

low cardiac index relevant to critically ill patients in our secondary outcome, as current cut-offs for low 

cardiac index are based on patients with acute lung injury, heart failure or after cardiac surgery (16-

20). Diagnostic test accuracies will be described for each finding or combinations of findings for our 

proposed cut-off of cardiac index. This secondary analysis, as well as the predefined subgroup analyses, 

will be considered exploratory and we will emphasise the need for validation in an independent cohort. 

 

8. Conclusion 
This SAP presents the principles of analysis of the SICS-I cohort and discusses its major methodologic 

and statistical concerns. We hope that the results of the SICS-I will be as transparent and robust as 

possible, so that we minimised the risk of outcome reporting bias and data-driven results. 
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9. Tables and figures 
Figure 1. Flow diagram (example) 
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Figure 2. Representation of a linear and a radial hyperplane in a Support Vector Machine classifier.  

 

Class 1: squares, class 2: circles, and in blue the boundary cases. 

 

 

 

Figure 3. Representation of a Random Forest classifier, with n trees 

 

The circles represent the nodes, with the red and green circles signalling the terminal nodes, and the 

arrows show the “optimal split” computed for each node of each tree. The aggregated vote of all (n) 

trees is then combined and expressed as a final classification, for example, “alive”. 
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Table 1. Specific research questions with add-on measurements 

Short title Research questions Primary 
outcome 

Basic study Which combination of clinical variables obtainable through physical examination is 
associated with cardiac output measured by critical care ultrasonography (CCUS)? 

Which combination of clinical and haemodynamic variables is associated with 7-day, 30-
day and 90-day mortality? 

Cardiac output 

 

Mortality 

1.    NIRS Which clinical examination, biochemical, and haemodynamic variables are associated with 
tissue (muscle) oxygen saturation (StO2) measured by near-infrared spectroscopy (NIRS)? 

Does the NIRS measurement at the knee have a better association with the clinical and 
haemodynamic variables compared to the NIRS measurement at the thenar muscle? 

Is StO2 measured by NIRS associated with 90-day mortality? 

StO2 

2.    Pulmonary 
ultrasound 

What is the diagnostic accuracy of pulmonary oedema measured with pulmonary 
ultrasonography and auscultation for pulmonary crackles compared to pulmonary oedema 
diagnosed on a chest radiograph? 

Is there a statistically and clinically significant difference in cardiac output between 
patients with and without a B-profile? 

Pulmonary 
edema 

3.     PEEP-challenge Is an increase in positive end-expiratory pressure (PEEP) associated with a decrease in 
cardiac output? 

Cardiac output 

4.    RV-function & 
mortality 

Is right ventricular (RV)-function measured by the tricuspid annular plane systolic excursion 
(TAPSE) and peak tissue Doppler systolic velocity in the tricuspid annulus (RV s’) associated 
with 90-day mortality? 

Is RV-function measured by TAPSE or RV s’ associated with clinical examination and cardiac 
output? 

Mortality 

5.    Abdominal flow Is peripheral blood flow measured with CCUS associated with cardiac output? 

Is a proxy for abdominal organ blood flow associated with acute kidney injury (AKI) or 90-
day mortality? 

Cardiac output 

6.    FloTrac** What is the level of agreement between cardiac output measured by the FloTrac compared 
to cardiac output measured with CCUS? 

Do the levels of agreement change when factors that might influence FloTrac 
measurements are present? 

Cardiac output 

7.    Repeated 
measurements 

Are changes in clinical examination findings over 24 hours associated with changes in 
cardiac output? 

Are changes in clinical examination, haemodynamic and biochemical variables over 24 
hours associated with 90-day mortality? 

Cardiac output 
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8.    RV-function & 
AKI 

Is RV-volume overload measured by tricuspid insufficiency and RV-diameters associated 
with acute kidney injury? 

Are clinical examination, biochemical, and haemodynamic variables associated with the 
development of AKI in patients without known pre-existent chronic kidney disease? 

Acute kidney 
injury 

9.    Fluid 
responsiveness 

What is the diagnostic accuracy of fluid responsiveness assessed by changes in end-tidal 
carbon dioxide (EtCO2), heart rate and blood pressure compared to fluid responsiveness 
assessed by the passive leg raising (PLR) test? 

What is the diagnostic accuracy of fluid responsiveness assessed by a PLR test without 
lowering the head of the bed compared to fluid responsiveness assessed by the standard 
PLR test? 

Cardiac output 

10. ARDS What is the diagnostic accuracy of a B-profile measured with pulmonary ultrasonography 
compared to bilateral consolidations assessed on chest radiography for the diagnosis of 
acute respiratory distress syndrome (ARDS)? 

Are B-lines measured with pulmonary ultrasonography associated with clinical 
examination, biochemical, and haemodynamic variables? 

ARDS 

11. Myocardial 
strain 

Is left ventricular (LV) and RV-myocardial strain measured with tissue Doppler imaging 
associated with 90-day mortality? 

Is left ventricular (LV) and RV-myocardial strain associated with and conventional CCUS 
measurements? 

What is the level of agreement between myocardial strain measured with tissue Doppler 
imaging and myocardial strain rate measured with speckle tracking? 

Mortality 

* B-profile: A B-profile is a strong indicator of pulmonary oedema and is present when three or more B lines are 

seen in at least three of the six BLUE points, or in two of the four lower BLUE points. 

** FloTrac: the FloTrac (Edwards Lifesciences, Irvine, California, USA) is a pulse contour technique which analyses 

the arterial pressure waveform to compute stroke volume and cardiac output. The technique consists a 

dedicated pressure sensor (FloTrac) and a monitor to compute stroke volume and cardiac output (Vigileo). 
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Table 2. Overview of all variables measured in the basic study and the sub-studies. 

Variable Basic study or 
substudy # 

Baseline After 
24 
hours 

After 3 
days 

At 90 
days 

Retrospec-
tive 

Clinical examination       

Examination date B X X    

Examination time B X X    

Gender B X     

Age B X     

Height B X     

Weight B X     

Respiratory rate B, 7 X X    

Heart rate and rhythm B, 3, 6, 7, 9 X X    

Intra-arterial blood pressures B, 3, 6, 7, 9 X X    

Non-invasive blood pressures B X     

Central venous pressure B, 3, 6, 7, 9 X X    

Urine output in 1 and 6 hours B, 7 X X    

Inotropic type, dose, speed B, 6, 7 X X    

Mechanical ventilation, ventilator 
settings 

B, 3, 7, 9, 10 X X    

AVPU score B X X    

Sedative type, dose, speed B X X    

Auscultation: souffles B, 2, 7, 10 X X    

Auscultation: crepitations B, 2, 7, 10 X X    

Auscultation: rhonchi B, 2, 10 X X    

Capillary refill: sternum B, 7 X X    

Capillary refill: index finger B, 7 X X    

Capillary refill: knee B, 1, 7 X X    

Temperature: subjective B, 7 X X    

Temperature: central B, 7 X X    
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Temperature: peripheral at big toe 
and dorsum of foot 

B, 7 X X    

∆Temp: central-to-peripheral B, 7 X X    

Mottling score at the knee B, 1, 6, 7 X X    

Peripheral circulation estimation B, 7 X X    

Pump function estimation B, 7 X X    

Degree of training B, 7 X X    

Haemodynamic variables 
measured with CCUS 

      

LVOT diameter B, 6 X    X (validation 
in Corelab) 

Peak flow velocity B, 6, 7 X X   X (validation 
in Corelab) 

Velocity time integral B, 6, 7 X X   X (validation 
in Corelab) 

Heart rate (echo) B, 6, 7 X X   X (validation 
in Corelab) 

Cardiac output B, 2, 3, 6, 7, 9, 
10 

X X   X (validation 
in Corelab) 

Cardiac output, every hour 6 X (during 6 
hours) 

    

B-lines on 6 locations 2, 4, 7, 10 X X    

TAPSE 2, 7, 8 X X    

RV S’ 2, 7, 8 X X    

Common carotid artery diameter, 
flow   

5 X     

Subclavian artery diameter, flow 5 X     

Common femoral artery, diameter, 
flow 

5 X     

Abdominal flow 5 X     

RV basal diameter 8 X     

RV mid cavity diameter 8 X     

RV longitudinal diameter 8 X     

Tricuspid regurgitation peak 
velocity 

8 X     

Left myocardial strain (rate) 11 X     
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Septal myocardial strain (rate) 11 X     

Right myocardial strain (rate) 11 X     

Other haemodynamic 
measurement devices 

      

NIRS: StO2 thenar & knee 1 X     

FloTrac: inclusion date and time 6, 7 X (during 6 
hours) 

X    

FloTrac: cardiac output every hour 6, 7 X (during 6 
hours) 

X (once)    

FloTrac: noradrenaline dose 6, 7 X (during 6 
hours) 

X (once)    

FloTrac: inotropic type, dose, and 
speed 

6, 7 X (during 6 
hours) 

X (once)    

FloTrac: mottling score 6, 7 X (during 6 
hours) 

X (once)    

Additional clinical variables       

ICU admission date B   X   

ICU admission time B   X   

EMV score B   X   

Admission reason B   X   

Patient admission specifics B   X   

Shock type B   X   

Final diagnosis B   X   

X-Ray measurements B   X  X 

ECG measurements B   X  X 

Respiratory distress 10   X   

Direct ARDS risk factors 10   X   

Indirect ARDS risk factors 10   X   

SOFA score      X 

SAPS II score      X 

APACHE II score      X 
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APACHE IV score      X 

Total ICU stay      X 

Medical history      X 

Biochemical variables       

Arterial blood gas variables B   X   

Serum leucocytes B   X   

Serum hematocrit B   X   

Serum thrombocytes B   X   

Serum NT-proBNP B   X   

Serum hs-troponin T B   X   

Serum ASAT, ALAT B   X   

Serum total and direct bilirubin B   X   

Serum and urine creatinine B, 8   X   

Serum and urine urea B   X   

Serum and urine albumin B   X   

Urine total volume and hours of 
collection 

B, 8   X   

Follow-up       

Mortality in-ICU All    X  

Mortality reason All    X  

Mortality 7 day All    X  

Mortality 30 day All    X  

Mortality 90 day All    X  
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Table 3. Summary of the hyper-parameters of the three algorithms used for predictive modeling 

Algorithm Parameters Definition 
 
Gradient Boosted Machine 

n.trees 
 

 
n.minobsnode 
 
 

 
interaction depth 
 

 
shrinkage 
 

Determines the number of trees 
(iterations) generated by the algorithm. 

 
Defines the minimum number of 
observations in the terminal nodes of a 
tree. 

 
Defines the number of terminal nodes or 
leaves of a tree. 

 
Controls the learning rate of the 
algorithm. 

 
Random Forest 

ntree 
 

 
mtry 

Defines the number of trees built by the 
algorithm. 

 
Defines the number of candidate variables 
randomly selected and tried at each split 
of a tree. 

 
Support Vector Machine 

cost (C) 
 

sigma (σ) 

Controls the misclassification tolerance. 
 

Defines how much a single 
training example influences the model (a 
higher sigma constrains the model 
towards linear).  
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APPENDIX 1: sub-studies 
This appendix elaborates on the study methods of the sub-studies of the Simple Intensive Care Studies-

I (SICS-I). Per sub-study, we elaborate on the research question, variable of interest, timing of the 

measurement in the basic study, additional exclusion criteria, sample size calculations, and the 

analyses. on the sub-study procedure, additional exclusion criteria, and primary and secondary 

outcomes. 

The conclusions based on the analyses in the sub-studies are explorative in nature and must all be 

confirmed in separate (external) validation cohorts. 

 

1. Near infra-red spectroscopy 
1.1. Research question 

Which clinical examination, biochemical, and haemodynamic variables are associated with tissue 

(muscle) oxygen saturation (StO2) measured by near-infrared spectroscopy (NIRS)? 

1.2. Variable of interest 

StO2 was measured by NIRS with the Inspectra StO2 tissue oxygenation monitor, model 650 

(Hutchinson Technology, Inc., Hutchinson, Minnesota, USA). We used a 15-mm probe to measure the 

StO2 at a depth of 14mm at two sites: the thenar eminence and the distal end of the vastus medialis 

muscle. The average StO2 value was calculated over 30 seconds after one minute of signal stabilisation. 

1.3. Timing of measurement 

During inclusion in the basic study (one-time snapshot). 

1.4. Additional exclusion criteria 

Liver failure (increased bilirubin levels cause interferences with StO2 measurements), patients with 

dark skin complexion (large quantities of melanin interfere with the near-infrared light emanated by 

the probe). 

1.5. Sample size, power and detectable difference 

We will conduct analysis of this sub-study with 32 patients, in which we will regress their values of 

NIRS against clinical examination findings such as central-to-toe temperature difference. Prior data 

indicate that the standard deviation of central-to-toe temperature is 4.1 with and estimated standard 

deviation of the regression errors of 23. If the true slope of the line obtained by regressing NIRS against 

central-to-toe temperature is 3.406, we will be able to reject the null hypothesis that this slope equals 
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zero with probability (power) 80%. The type I error probability associated with this test of this null 

hypothesis is 0.015. 

1.6. Runtime 

1 April 2015 until 5 August 2015. 

1.7. Primary analysis 

The association between clinical, biochemical and haemodynamic variables and tissue (muscle) StO2 

measured by NIRS at the knee. 

1.8. Secondary analyses 

The association between clinical, biochemical and haemodynamic variables and tissue (muscle) StO2 

measured at the thenar muscle. 

The association between tissue (muscle) StO2 measured by NIRS and 90-day mortality. 

 

2. Pulmonary ultrasound 
2.1. Research question 

What is the diagnostic accuracy of pulmonary oedema measured with pulmonary ultrasonography and 

auscultation for pulmonary crackles compared to pulmonary oedema diagnosed on a chest 

radiograph? 

2.2. Variables of interest 

Pulmonary ultrasound was conducted with the cardiac probe M3S of M4S with default cardiac imaging 

and maximal frequency (3.6 MHz) setting of the General Electric Vivid-S6 mobile ultrasound machine. 

We measured the presence or absence of B-lines at the six locations specified in the BLUE-protocol. 

The presence of a B-profile was defined by three or more B lines observed in at least three of the six 

BLUE points, or in two of the four lower BLUE points.  

Pulmonary oedema was diagnosed by the radiologist who reviewed chest radiographs as part of daily 

care. The radiologist was blinded for the variables collected in our study. 

2.3. Timing of measurement 

During inclusion in the basic study (one-time snapshot). 

2.4. Additional exclusion criteria 

Patients after pulmonary transplantation. 
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2.5. Sample size, power and detectable difference 

Due to a set sample size we were able to estimate the precision of our estimate (i.e. the maximum 

marginal error). We calculated the maximum marginal error with the formulas of Hajian-Tilaki (49) and 

information from Simel et al. (50) and Flauhault et al (51). In our pilot data, the prevalence of 

pulmonary oedema diagnosed by chest radiography was 18.6%, and a B-profile measured with 

pulmonary ultrasonography had a sensitivity of 54.5% and a specificity of 93.8%. Based on 446 

validated chest radiography images, a type-I error of 0.015 (with a corresponding Z-value of 2.17), and 

the abovementioned prevalence, sensitivity and specificity, the estimated maximal marginal error for 

sensitivity is 11.9% and 2.7% for specificity.  

2.6. Runtime 

Since 1 September 2015. 

2.7. Primary analysis 

The diagnostic test accuracy of a B-profile measured with pulmonary ultrasonography compared to 

pulmonary oedema diagnosed by chest radiography. 

The diagnostic test accuracy of pulmonary crackles assessed with auscultation compared to pulmonary 

oedema diagnosed by chest radiography. 

2.8. Secondary analysis 

The statistically and clinically significant difference in CO between patients with and without a B-

profile. 

 

3. Positive end-expiratory pressure challenge 
3.1. Research question 

Is an increase in positive end-expiratory pressure (PEEP) associated with a decrease in cardiac output? 

3.2. Variable of interest 

During the PEEP-challenge, an additional 10 cm H2O of PEEP was temporarily applied when supervised 

by the treating ICU physician. The PEEP was elevated for a maximum duration of 5 minutes during 

which the changes in cardiac output, heart rate, blood pressures and central venous pressure were 

recorded. 

3.3. Timing of measurement 

During inclusion in the basic study and after temporary PEEP application (repeated measurements). 
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3.4. Additional exclusion criteria 

The attending ICU physician was not interested in fluid responsiveness at time of inclusion. 

3.5. Sample size, power and detectable difference 

We are planning a study with paired measurements in 25 patients. Prior pilot data indicate that the 

difference in the cardiac output of matched pairs is normally distributed with standard deviation 0.60. 

If the true difference in the cardiac output before and after application of PEEP is 0.42, we will be able 

to reject the null hypothesis that this response difference is zero with probability (power) 80%. The 

type I error probability associated with this test of this null hypothesis is 0.015. 

3.6. Runtime 

1 September 2015 until 3 January 2016. 

3.7. Primary analysis 

The association between PEEP increase and cardiac output. 

3.8. Secondary analysis 

None. 

 

4. Right ventricular function and mortality 
4.1. Research question 

Is right ventricular (RV)-function measured by the tricuspid annular plane systolic excursion (TAPSE) 

and peak tissue Doppler systolic velocity in the tricuspid annulus (RV s’) independently associated with 

90-day mortality? 

4.2. Measurement method 

TAPSE and RV s’ have been measured with the cardiac probe M3S of M4S with default cardiac imaging 

setting of the General Electric Vivid-S6 mobile ultrasound machine. Both measurements were obtained 

in the AP4CH view. TAPSE was assessed in M-mode, after placing the cursor on the junction of the 

tricuspid valve and the RV free wall. RV s’ was assessed in the tissue velocity imaging mode highlighting 

the area of interest. The pulsed Doppler sample volume was placed at the tricuspid level of the RV free 

(i.e. lateral) wall and the longitudinal velocity of excursion was measured. 

4.3. Timing of measurement 

During inclusion in the basic study (one-time snapshot). 
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4.4. Additional exclusion criteria 

None. 

4.5. Sample size, power and detectable difference 

In our design paper, we have 112 patients with an impaired TAPSE and 279 patients with a normal 

TAPSE (controls). Pilot data indicate that the 90-day mortality proportion among controls is 0.28 7. We 

will be able to detect true relative risks of 0.46 or 1.62 in patients with impaired TAPSE relative to 

controls with probability (power) 80%. The type I error probability associated with this test of the null 

hypothesis that this relative risk equals 1 is 0.015. We will use an uncorrected chi-squared statistic to 

evaluate this null hypothesis. 

4.6. Runtime 

Since 10 February 2016. 

4.7. Primary analysis 

The association between RV-function measured by TAPSE or RV s’ and 90-day mortality. 

4.8. Secondary analysis 

The association between RV-function measured by TAPSE or RV s’ and clinical examination findings 

and cardiac output. 

 

5. Abdominal flow 
5.1. Research question 

Is peripheral blood flow measured with CCUS associated with cardiac output? 

5.2. Variables of interest 

Common carotid artery, subclavian artery, and common femoral artery flows have been measured 

with the linear probe 8L or 9L and default carotid setting of the General Electric Vivid-S6 mobile 

ultrasound machine. A proxy for abdominal flow was calculated by subtracting flow over both left and 

right carotid, subclavian and femoral arteries from the cardiac output. 

5.3. Timing of measurement 

During inclusion in the basic study (one-time snapshot). 

5.4. Additional exclusion criteria 
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Obstruction of the desired window of peripheral artery flow (e.g. by a central venous or dialysis 

catheter, postsurgical incisions, wounds, etc.). 

5.5. Sample size, power and detectable difference 

We will conduct analyses of this sub-study with 59 patients, in which we will regress their values of 

cardiac output against peripheral flow measurements such as common carotid artery flow. Our pilot 

data indicate that the standard deviation of common carotid artery flow is 7.9, with an estimated 

standard deviation of the regression errors of 97. If the true slope of the line obtained by regressing 

cardiac output against common carotid artery flow is 5.4, we will be able to reject the null hypothesis 

that this slope equals zero with probability (power) 80%. The type I error probability associated with 

this test of this null hypothesis is 0.015. 

5.6. Runtime 

14 April 2016 until 17 August 2016. 

5.7. Primary analysis 

The association between peripheral blood flow measured at the common carotid, subclavian, and 

common femoral arteries and cardiac output. 

5.8. Secondary analysis 

The association between a proxy for abdominal organ blood flow and acute kidney injury (AKI) or 90-

day mortality. 

 
 
6. FloTrac 
6.1. Research question 

What is the level of agreement between cardiac output measured by the FloTrac compared to cardiac 

output measured with CCUS? 

6.2. Variable of interest 

Cardiac output has been estimated with the FloTrac (Edwards Lifesciences, Irvine, California, USA) and 

a monitor to compute stroke volume and cardiac output (Vigileo, Edwards Lifesciences, Irvine, 

California, USA). The FloTrac analyses the arterial pressure waveform to compute stroke volume and 

cardiac output. The estimated cardiac output was compared to the cardiac output measured with the 

General Electric Vivid-S6 mobile ultrasound machine. 

6.3. Timing of measurement 
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Paired cardiac output measurements were conducted after admission every hour for 4 hours and once 

24 hours after admission. 

6.4. Additional exclusion criteria 

Patients not requiring vasopressors and/or inotropes, an inadequate acoustic window for cardiac 

output measured by CCUS, absence of an arterial line, atrial fibrillation during inclusion, aortic and/or 

mitral valve disease. 

6.5. Sample size, power and detectable difference 

We are planning a study with paired measurements in 55 patients. Prior pilot data indicate that the 

difference in the cardiac output of both measurements devices is normally distributed with standard 

deviation 0.86. If the true difference in the cardiac output of both measurements devices is 0.39, we 

will be able to reject the null hypothesis that this response difference is zero with probability (power) 

80%. The type I error probability associated with this test of this null hypothesis is 0.015. 

6.6. Runtime 

Since June 1st, 2016. 

6.7. Primary analysis 

The level of agreement between cardiac output measured by the FloTrac and cardiac output measured 

with CCUS. 

6.8. Secondary analysis 

The changes in levels of agreement when factors that might influence FloTrac measurements are 

present. 

 

7. Repeated measurements 
7.1. Research question 

Are changes in clinical examination findings over 24 hours associated with changes in cardiac output? 

7.2. Variable of interest 

We repeated the measurements of the variables collected in the basic study, sub-study 2, and sub-

study 4. We performed these measurements 24 hours (minimum 22 to maximum 26 hours) after the 

first measurement and calculated differences. The sign of the variable indicates whether a variable has 

either increased (positive number) or decreased (negative number). 
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7.3. Timing of measurement 

During inclusion in basic study and 24 hours (minimum 22 hours to maximum 26 hours) thereafter. 

7.4. Additional exclusion criteria 

Patients not requiring vasopressors and/or inotropes, expected stay less than 48 hours. 

7.5. Sample size, power and detectable difference 

We are planning to conduct this sub-study with 100 patients and we will regress their values of 

difference in cardiac output changes over 24 hours against clinical examination findings such as 

central-to-toe temperature difference. Prior data indicate that the standard deviation of central-to-

toe temperature is 4.1 with an estimated standard deviation of the regression errors of 1.35.  If the 

true slope of the line obtained by regressing changes in cardiac output against central-to-toe 

temperature differences is 0.16, we will be able to reject the null hypothesis that this slope equals zero 

with probability (power) 80%. The type I error probability associated with this test of this null 

hypothesis is 0.015. 

7.6. Runtime 

Since 12 August 2016. 

7.7. Primary analysis 

The association between changes in clinical examination findings over 24 hours and changes in cardiac 

output. 

7.8. Secondary analysis 

The association between changes in clinical examination, biochemical, and haemodynamic variables 

over 24 hours and 90-day mortality. 

 

8. Right ventricular function and acute kidney injury 
8.1. Research questions 

Is RV-volume overload measured by tricuspid insufficiency and RV-diameters associated with acute 

kidney injury (AKI)? 

Are clinical examination, biochemical, and haemodynamic variables associated with the development 

of AKI in patients without known pre-existent chronic kidney disease? 
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8.2. Variable of interest 

Right ventricle diameters and tricuspid regurgitation velocity have been measured with the cardiac 

probe M3S of M4S with default cardiac imaging setting of the General Electric Vivid-S6 mobile 

ultrasound machine. The measurements were obtained in the AP4CH view with a right ventricle 

centred view. AKI was established and classified following the kidney disease: improving global 

outcomes (KDIGO) criteria. Urine output and serum creatinine measurements from the first 72 hours 

of inclusion were analysed to establish and classify AKI for each patient. 

8.3. Timing of measurement 

During inclusion in basic study (one-time snapshot). 

8.4. Additional exclusion criteria 

None. 

8.5. Sample size, power and detectable difference 

In our design paper, we have 489 patients who developed AKI and 418 patients with a normal renal 

function (controls). Pilot data from our design paper indicate that the AKI proportion among controls 

is 0.54. We will be able to detect true relative risks of 0.80 or 1.20 in exposed patients relative to 

unexposed patients with probability (power) 0.80. The type I error probability associated with this test 

of the null hypothesis that this relative risk equals 1 is 0.015.  

8.6. Runtime 

Since 25 October 2016. 

8.7. Primary analyses 

The association between RV-volume overload measured by tricuspid insufficiency and RV-diameters 

and AKI. 

The association between clinical, biochemical, and haemodynamic variables and the development of 

AKI. 

8.8. Secondary analyses 

The association between RV-volume overload measured by tricuspid insufficiency and RV diameters 

and 90-day mortality. 

The association between clinical, biochemical, and haemodynamic variables and the development of 

AKI regardless of the presence of pre-existent chronic kidney disease. 
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9. Fluid responsiveness 
9.1. Research question 

What is the diagnostic accuracy of fluid responsiveness assessed by changes in end-tidal carbon dioxide 

(EtCO2), heart rate and blood pressure compared to fluid responsiveness assessed by the passive leg 

raising (PLR) test? 

What is the diagnostic accuracy of fluid responsiveness assessed by a PLR test without lowering the 

head of the bed compared to fluid responsiveness assessed by the standard PLR test?  

9.2. Variable of interest 

During the fluid responsiveness study, two different PLR tests were applied when supervised by the 

treating ICU physician. Every passive leg raising manoeuvre was conducted for a maximum duration of 

60 seconds during which the changes in cardiac output, heart rate, blood pressures, central venous 

pressure, and EtCO2 were recorded. Fluid responsiveness was diagnosed when cardiac output 

increased with 15% after the PLR-test. The PEEP-challenge was conducted in a similar manner as 

described in sub-study 3.  

9.3. Timing of measurement 

During inclusion in basic study (one-time snapshot). 

9.4. Additional exclusion criteria 

The attending ICU physician was not interested in fluid responsiveness at time of inclusion. 

9.5. Sample size, power and detectable difference 

Due to a set sample size we were able to estimate the precision of our estimate (i.e. the maximum 

marginal error). In our pilot data, the prevalence of fluid responsiveness was 45%, and EtCO2 increase 

of 0.3 had a sensitivity of 83.3% and a specificity of 71.4%. Based on 20 included patients who 

underwent the PLR-test, a type-I error of 0.015 (with a corresponding Z-value of 2.17), and the 

abovementioned prevalence, sensitivity and specificity, the estimated maximal marginal error for 

sensitivity is 11.9% and 2.7% for specificity. 

9.6. Runtime 

Since 20 January 2017. 

9.7. Primary analyses 

The diagnostic accuracy of fluid responsiveness assessed by changes in EtCO2, heart rate and blood 

pressure compared to the PLR test. 
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The diagnostic accuracy of fluid responsiveness assessed by a PLR test without lowering the head of 

the bed compared to the standard PLR test. 

9.8. Secondary analyses 

The association between a temporary PEEP-increase and cardiac output in fluid responders and fluid 

non-responders. 

The diagnostic accuracy of a temporary PEEP-increase compared to the standard PLR test. 

 

10. Acute respiratory distress syndrome 
10.1. Research question 

What is the diagnostic accuracy of a B-profile measured with pulmonary ultrasonography compared to 

bilateral consolidations assessed on chest radiography for the diagnosis of acute respiratory distress 

syndrome (ARDS)? 

10.2. Variable of interest 

ARDS will be defined according to the Berlin ARDS criteria: 1) presence of acute hypoxemic respiratory 

failure defined by a PaO2/FiO2 ratio < 300 mm Hg and PEEP ≥ 5 cm H2O; 2) onset within one week of 

clinical insult or worsening respiratory symptoms; 3) bilateral consolidations on chest radiography or 

CT-thorax. 

10.3. Timing of measurement 

During inclusion in basic study (one-time snapshot). 

10.4. Additional exclusion criteria 

Included patients with no pulmonary ultrasound or chest radiography measurements, patients after 

pulmonary transplantation 

10.5. Sample size, power and detectable difference 

Due to a set sample size we were able to estimate the precision of our estimate (i.e. the maximum 

marginal error). In our pilot data, the diagnosis of ARDS was 5.8%, and the presence of a B-profile had 

a sensitivity of 88.5% and a specificity of 64.5%. Based on pilot data of 446 included, a type-I error of 

0.015 (with a corresponding Z-value of 2.17), and the abovementioned prevalence, sensitivity and 

specificity, the estimated maximal marginal error for sensitivity is 13.6% and 20.4% for specificity. 

10.6. Runtime 
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Since 1 September 2015. The research questions and hypotheses were incorporated at 1 February 

2016. 

10.7. Primary analysis 

The diagnostic accuracy of a B-profile assessed with pulmonary ultrasonography compared to bilateral 

consolidations assessed on chest radiography for the diagnosis of ARDS. 

10.8. Secondary analysis 

The association between B-lines measured with pulmonary ultrasonography and clinical examination, 

biochemical and haemodynamic variables.  

 

11. Myocardial strain 
11.1. Research question 

Are left ventricular (LV) and RV-myocardial strain measured with tissue Doppler imaging associated 

with 90-day mortality? 

11.2. Variable of interest 

Myocardial strain and myocardial strain rates have been measured with the cardiac probe M3S of M4S 

with default cardiac imaging setting of the General Electric Vivid-S6 mobile ultrasound machine. The 

measurements were obtained in the AP4CH window with a left ventricle and right ventricle centred 

view for left and right myocardial strain, respectively. 

11.3. Timing of measurement 

During inclusion in basic study (one-time snapshot). 

11.4. Additional exclusion criteria 

None. 

11.5. Sample size, power and detectable difference 

In a pilot study we included 51 patients of which 9 died. Pilot data from our design paper indicate that 

the 90-day mortality proportion among controls is 0.28 7. We will be able to detect a true relative risk 

of 3.0 in diseased patients subjects relative to patients who survived with probability (power) 0.80. The 

Type I error probability associated with this test of the null hypothesis that this relative risk equals 1 is 

0.015.  
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11.6. Runtime 

Since 18 March 2017. 

11.7. Primary analysis 

The association between LV- and RV-myocardial strain measured with tissue Doppler imaging and 90-

day mortality. 

11.8. Secondary analyses 

The association between LV- and RV-myocardial strain imaging and conventional CCUS measurements. 

The level of agreement between myocardial strain measured with tissue Doppler imaging and 

myocardial strain rate measured with speckle tracking. 
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