Congenital Muscular Dystrophy Ascending Multiple Dose Cohort Study analysing Pharmacokinetics at three dose Levels in Children and Adolescents with Assessment of Safety and Tolerability of Omigapil (CALLISTO)

Study code: SNT-I-015

Phase I study

STATISTICAL ANALYSIS PLAN
Signatures:

Statistical Analysis Plan was prepared by:

Sofia Männikkö
Study Statistician, Oy 4Pharma Ltd.
Date

Statistical Analysis Plan was reviewed/approved by:

Senior Statistician
Date

Responsible person from the Sponsor
Date

Principal Investigator
Date
Table of Contents

1 Abbreviations... 4
2 Introduction ... 5
3 Study objectives... 5
4 Design and type of the study ... 5
5 Sample size considerations... 5
6 Analysis sets .. 6
 6.1 Intention-to-treat (ITT) dataset ... 6
 6.2 Pharmacokinetic (PK) dataset... 6
 6.3 Safety dataset .. 6
7 Disposition of patients... 6
8 Demographic and other baseline characteristics ... 6
9 Concomitant medication/treatment.. 7
10 Extent of exposure and compliance ... 7
11 Pharmacokinetics .. 7
12 Analysis of safety and tolerability... 7
 12.1 Adverse events ... 7
 12.2 Laboratory safety variables ... 7
 12.3 Other safety variables .. 8
13 Disease relevant clinical assessments .. 8
 13.1 Respiratory function testing (hospital spirometry)... 8
 13.2 Respiratory function testing (handheld ASMA-1 device).. 11
 13.3 Muscle strength and motor function testing ... 12
14 Deviations from the analyses planned in the study protocol... 14
15 Execution of statistical analyses... 14
16 Hardware and software.. 14
17 References .. 14
18 Appendices .. 15
 18.1 Table and figure plan (section 14 in the Study report)... 15
 18.2 Data listing plan (section 16 in the Study report)... 18
1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>Adverse Event</td>
</tr>
<tr>
<td>AESI</td>
<td>Adverse Event of Special Interest</td>
</tr>
<tr>
<td>ATC</td>
<td>Anatomical Therapeutic Chemical</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under the Curve</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CMD</td>
<td>Congenital Muscular Dystrophy</td>
</tr>
<tr>
<td>COL6-RD</td>
<td>Collagen 6-related dystrophies and myopathies</td>
</tr>
<tr>
<td>CRM</td>
<td>Continual Reassessment Method</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>EK2</td>
<td>Egen Klassification 2</td>
</tr>
<tr>
<td>FEV1</td>
<td>Forced Expiratory Volume during first second of the forced breath</td>
</tr>
<tr>
<td>FVC</td>
<td>Forced Vital Capacity</td>
</tr>
<tr>
<td>HHM</td>
<td>Hand held myometry</td>
</tr>
<tr>
<td>IFR</td>
<td>Inspiratory Flow Reserve</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention to Treat</td>
</tr>
<tr>
<td>JHFT</td>
<td>Jebsen Hand Function Test</td>
</tr>
<tr>
<td>LAMA2-RD</td>
<td>Laminin Alpha 2-related dystrophy</td>
</tr>
<tr>
<td>MedDRA</td>
<td>Medical Dictionary for Regulatory Activities</td>
</tr>
<tr>
<td>MEP</td>
<td>Maximum Expiratory Pressure</td>
</tr>
<tr>
<td>MFM</td>
<td>Motor Function Measure</td>
</tr>
<tr>
<td>MIP</td>
<td>Maximum Inspiratory Pressure</td>
</tr>
<tr>
<td>PCF</td>
<td>Peak Cough Flow</td>
</tr>
<tr>
<td>PEF</td>
<td>Peak Expiratory Flow</td>
</tr>
<tr>
<td>PK</td>
<td>Pharmacokinetic</td>
</tr>
<tr>
<td>PP</td>
<td>Per Protocol</td>
</tr>
<tr>
<td>PT</td>
<td>Preferred Term</td>
</tr>
<tr>
<td>PUL</td>
<td>Performance Upper Limb</td>
</tr>
<tr>
<td>QTcF</td>
<td>QT corrected for HR using Fridericia’s method</td>
</tr>
<tr>
<td>QTcB</td>
<td>QT corrected for HR using Bazett's method</td>
</tr>
<tr>
<td>SAE</td>
<td>Serious Adverse Event</td>
</tr>
<tr>
<td>SAP</td>
<td>Statistical Analysis Plan</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SOC</td>
<td>System Organ Class</td>
</tr>
</tbody>
</table>
2 Introduction

This Statistical Analysis Plan (SAP) describes the statistical analyses to be conducted for study SNT-I-015, an exploratory phase I study of omigapil. The statistical methods were prospectively planned in the study protocol. This SAP was written during the study conduct and the authors and reviewers of the SAP had access to the study data. This SAP serves as documentation of statistical methods used to derive the endpoints and summarize the study data.

3 Study objectives

The study objectives were defined in the study protocol. The primary objective of the study is to establish the pharmacokinetic (PK) profile of omigapil in a range of doses in paediatric and adolescent patients with Congenital Muscular Dystrophy (CMD). The secondary objective is to evaluate the safety and tolerability of omigapil at a range of doses in paediatric and adolescent patients. The tertiary objective is to establish the feasibility of conducting disease-relevant clinical assessments in paediatric and adolescent patients with CMD to aid in the design of future studies.

4 Design and type of the study

Study SNT-I-015 is a phase I, open-label, sequential group, ascending oral dose, continual reassessment method (CRM) based model, PK, cohort study with patients randomly assigned to one of the three dose cohorts.

Dose levels were to be defined based on the following rules. Four subjects were to be treated at 0.02 mg/kg (level 1) daily for 12 weeks. In case of no toxicity, dose escalation would occur after every 4 subjects until one or more patients exceed the target AUC_{0-24h} range. When exceeding the target range, subsequent dose levels were to be determined from the observed PK. Subsequent patients were to be enrolled in groups of 4 using a CRM-type dose escalation/reduction design with the possibility to interpolate between pre-specified doses (Cheung, 2011). As a result, 4 dose levels of omigapil were used for the randomized groups in the following order, along the study, (0.02 mg/kg, 0.08 mg/kg, 0.04 mg/kg, 0.06 mg/kg).

Patients were stratified by disease type (Laminin Alpha 2-related dystrophy [LAMA2-RD] or Collagen 6-related dystrophies and myopathies [COL6-RD]) and weight and will be similarly represented. One patient was to be assigned from each stratum to each dose-escalating group (cohort), so that the cohorts will have similar representation of disease type and weight, to ensure comparable PK, safety, tolerability and efficacy feasibility assessment data.

5 Sample size considerations

A total of 16-20 evaluable patients were planned to be accrued using a CRM-type dose escalation/reduction design with the possibility to interpolate between pre-specified doses. The proposed dosing schedule adapts from a CRM-like algorithm called SAVOR (Cheung, Elkind, 2010) that aims to identify a dose exceeding AUC_{0-24h} of 33 ng h/ml with a probability of 10% or less. The upper end of the AUC_{0-24h} of 3-33 ng h/ml was targeted because animal modelling in
CMD-relevant models showed higher efficacy at 1 mg/kg compared to 0.1 mg/kg. By enrolling up to 20 patients, 8-12 subjects were to be assigned to the dose predicted to result in the target \(\text{AUC}_{0-24h} \) range (which may be less than the highest dose).

6 Analysis sets

6.1 Intention-to-treat (ITT) dataset

The ITT dataset will include all enrolled patients who received at least one dose of the study medication and completed at least one post-baseline assessment. The ITT dataset will be used for all analyses related to disease relevant clinical assessments.

6.2 Pharmacokinetic (PK) dataset

The PK dataset will include all enrolled patients who received at least one dose of the study medication and completed at least one PK assessment. However, a review of dosing information will be performed by the investigator to consider excluding data in any period or on any day where a subject was judged to have received <80% or >120% of the scheduled dose of the investigational product. Plasma concentration data will be excluded if concentrations are extremely low relative to other subjects’ data; in these cases plasma concentrations will be excluded from all or part of the profile, as appropriate. The PK dataset will be used for all PK analyses.

6.3 Safety dataset

The Safety dataset will include all enrolled patients who received at least one dose of study medication. Safety dataset will be used for all the safety analyses.

7 Disposition of patients

The number of patients enrolled into the study at screening, the number of patients who failed the screening and the reasons for screening failures will be summarized. The number of patients entering and completing the study will be summarized by dose level and overall. Also, the number of patients who discontinued prematurely, the reasons for premature discontinuations and replacement information will be summarized by dose level and overall. The disposition data will also be presented in a listing format.

8 Demographic and other baseline characteristics

All demographic and other baseline characteristics (age, height, weight, body mass index [BMI], gender, ethnicity, race, child-bearing potential, ambulatory status, disease type (LAMA2-RD or COL6-RD), time since CMD diagnosis and use of respiratory aid [Bi-Pap]) will be listed by dose level and summarized with descriptive statistics by dose level. The physical examination findings, medical history and pregnancy test results will be listed by dose level.

Age will be calculated using month of birth and month of baseline (screening) visit as difference in months between baseline and time of birth divided by 12. Height will be estimated from ulna length by using the following formulas (Gauld, 2003, 2004):

\[
\text{Height (male, age <20) = ((4.605* ulna length [cm]) + (1.308 * age [years]) + 28.003}
\]
Height (female, age < 20) = ((4.459* ulna length [cm]) + (1.315 * age [years]) + 31.485.

Height and weight will also be presented as percentages of normal growth at the age of the patient (Clinical Growth Charts, U.S. National Center for Health Statistics).

9 Concomitant medication/treatment
Concomitant medication and treatments are coded to WHO drug dictionary version September 2017, and will be listed by dose level, including the Preferred term and ATC classification levels 1 and 4.

10 Extent of exposure and compliance
The extent of exposure will be summarized based on the duration of study treatment (days). The duration of study treatment will be listed and summarized with descriptive statistics by dose level. Compliance will be evaluated as percentage of the daily doses taken (calculated from the estimated volume withdrawn from the bottle and daily dosing volumes) since previous visit. Patients with compliance of 80-120% are considered as compliant. The compliance (as %) will be listed by dose level. In addition, the proportion of compliant patients will be tabulated by dose level.

11 Pharmacokinetics
The analysis of the PK parameters is described in a separate PK Analysis Plan (Appendix 18.3).

12 Analysis of safety and tolerability

12.1 Adverse events
All recorded adverse events (AEs) will be coded according to the Medical Dictionary for Regulatory Activities (MedDRA version 20.1). All treatment emergent AEs (TEAEs), i.e. events starting or worsening during study treatment or follow-up will be listed by dose level and tabulated by dose level, system organ class (SOC) and preferred term (PT). Both patient and event counts will be included in the tabulations. In addition, tabulations by severity and causality will be provided. Serious TEAEs (SAEs) and TEAEs leading to discontinuation of study treatment will be summarized as data listings. The AEs occurring during the run-in period will be listed separately. Adverse events of special interest (AESI) will be summarized by dose level, SOC and PT. Also a listing with PFT information from all visits during the study will be presented together with the AE information for subjects experiencing AESI. The following preferred term will be considered as AESI: Pulmonary function test decreased.

12.2 Laboratory safety variables
All laboratory data will be listed by dose level. In addition, descriptive statistics of routinely measured laboratory safety variables at each visit will be computed. Both the absolute values and changes from baseline will be summarized by dose level. Frequencies of out-of-range values (low, normal or high) and clinically significant values defined by the investigator will be summarized by dose level and visit as shift tables.
12.3 Other safety variables

ECG results (Heart rate, PR, QRS, RR, QT, QTcF and QTcB times) will be listed by dose level and summarized with descriptive statistics by dose level using absolute values and changes from baseline to post-baseline pre-dose values. Moreover, the changes within each visit from pre to post-dose will be summarized. The ECG interpretation (Normal, Abnormal but not clinically significant or Abnormal and clinically significant) and abnormal QTcF and QTcB results (values >500 ms or changes of >30 ms and of > 60 ms) will be listed by dose level and summarized by visit, time point and dose level as shift tables. The QTcF and QTcB times will be calculated based on the following formulas:

\[
\text{QTcF} = \frac{QT}{RR^{1/3}}
\]
\[
\text{QTcB} = \frac{QT}{RR^{1/2}},
\]

where \(RR = \frac{60}{HR} \).

Vital signs results (ulna length, height based on ulna length, weight, saturation of peripheral oxygen, blood pressure, heart rate, respiratory rate, body temperature, ability to stand, ambulatory status) will be listed by dose level and summarized descriptively by visit, time point and dose level. Absolute values, changes from baseline to post-baseline pre-dose values and within visit changes from pre- to post-dose values will be presented in the summaries.

Liver abdominal ultrasound results (liver span, echogenicity, presence of cysts and tumours, bile duct dilatation, gallbladder filled, presence of stones and portal vein dilatation) will be listed by dose level and summarized descriptively by dose level and visit. For the last visit, information on changes in the ultrasound from baseline will be listed.

13 Disease relevant clinical assessments

All disease relevant clinical assessment variables will be summarized as data listings by dose level. In addition, descriptive statistics/ frequency tables will be included when appropriate. Both absolute values and changes from baseline (if feasible) will be presented. The descriptive statistics/ frequency tables will be broken down by visit. Relevant background status (age of the patient, ambulatory status and type of disease) and AUC\(_{0-24h}\) information from PK analysis of plasma concentrations vs time profiles of omigapil will be included in the listings.

13.1 Respiratory function testing (hospital spirometry)

Respiratory function tests will be presented as non-normalized values and as percentages of predicted values for Peak Expiratory Flow (PEF), Forced Vital Capacity (FVC), Forced Expiratory Volume during first second of the forced breath (FEV1), Maximum Expiratory Pressure (MEP) and Maximum Inspiratory Pressure (MIP). The equations presented in table 13.1.1 will be used for calculation of the percent predicted values. For the equations presented by race, the Caucasian equation will be used also for the Asian subjects. Due to loss of ambulation/ loss of ability to stand, the height will be estimated from the ulna length for all subjects. Age and height used in the equations will always be the age at the time of the measurement and calculated using month of birth and month of assessment date as time difference in months divided by 12.
Table 13.1.1 Percent predicted equations for respiratory function tests

<table>
<thead>
<tr>
<th>Value (Reference)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF%p (Hankinson, 1999)</td>
<td>Caucasian
Male (age < 20 years): PEF/((-0.5962–(0.12357age))+ (0.013135(age^2))+((0.00024962*(height^2))1))/60100
Female (age < 18 years): PEF/((-3.6181+(0.60644age)-(0.016846(age^2))+((0.0018623*(height^2))1))/60100</td>
</tr>
<tr>
<td>Black or African-American
Male (age < 20 years): PEF/((-0.2684–(0.28016age)+(0.018202(age^2))+((0.00027333*(height^2))1))/60100
Female (age < 18 years): PEF/((-1.2398+(0.16375age)+((0.00019746(height^2))1))/60100</td>
<td></td>
</tr>
<tr>
<td>FVC%p (Hankinson 1999)</td>
<td>Caucasian
Male (age < 20 years): FVC100/((-0.2584-(0.20415age))+(0.010133*(age^2))+(0.00018642*(height^2))1))
Female (age < 18 years): FVC100/((-1.2082+(0.05916age))+(0.00014815(height^2))*1))</td>
</tr>
<tr>
<td>Black or African American
Male (age < 20 years): FVC100/((-0.4971-(0.15497age))+(0.007701*(age^2))+((0.00016643*(height^2))1))
Female (age < 18 years): FVC100/((-0.6166-(0.04687age))+ (0.003602(age^2))+(0.00013606*(height^2))*1))</td>
<td></td>
</tr>
<tr>
<td>MEP%p (age < 18) (Domenech-Clar, 2003)</td>
<td>Male: MEP100/(7.619+(7.806age)+(0.004heightweight))
Female: MEP100/(17.066+(7.220age))</td>
</tr>
<tr>
<td>MIP%p (Domenech-Clar, 2003)</td>
<td>Male: -MIP100/(–27.020–(4.132age)–(0.003heightweight))
Female: -MIP100/(–33.854–(1.814age)–(0.004heightweight))</td>
</tr>
<tr>
<td>FEV1%p (Hankinson 1999)</td>
<td>Caucasian
Male (age < 20 years): FEV1100/((-0.7453-(0.04106age))+(0.004477*(age^2))+(0.00014098*(height^2))*1))</td>
</tr>
</tbody>
</table>
The highest respiratory function test value at each visit will be used in the calculations. Percent predicted values for PCF will be counted by using the 50th percentiles by age presented in table 12.1.2 (Bianchi, 2008) with the following formula: $PCF\%p = PCF \times 100 / 50th$ percentile for the age. Age used in defining the percentiles will be the age at the time of the measurement and calculated with precision using month of birth and month of assessment date.

<table>
<thead>
<tr>
<th>Value (Reference)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (age < 18 years):</td>
<td>$FEV1 \times 100 / \left(\left(-0.8710 + (0.06537 \times \text{age}) \right) + \left((0.00011496 \times \text{height}^2) \times 1 \right) \right)$</td>
</tr>
<tr>
<td>Black or African American Male (age < 20 years):</td>
<td>$FEV1 \times 100 / \left(\left(-0.7048 - (0.05711 \times \text{age}) \right) + \left(0.004316 \times \text{age}^2 \right) + \left((0.00013194 \times \text{height}^2) \times 1 \right) \right)$</td>
</tr>
<tr>
<td>Female (age < 18 years):</td>
<td>$FEV1 \times 100 / \left(\left(-0.9630 + (0.05799 \times \text{age}) \right) + \left((0.00010846 \times \text{height}^2) \times 1 \right) \right)$</td>
</tr>
</tbody>
</table>
Additionally, Slow Vital Capacity (SVC) will be evaluated as non-normalized values and Inspiratory Flow Reserve (IFR) both as a fraction and as absolute based on the following formulas:

$$\text{IFR, fraction} \% = \left(1 - \left(\frac{V'I, \text{max (t)}}{V'I, \text{max (FVC)}} \right) \right) \times 100$$

$$\text{IFR, absolute} = V'I, \text{max (FVC)} - V'I, \text{max (t)}.$$

The best values on the CRF, i.e. the lowest $V'I, \text{max (t)}$ and the highest $V'I, \text{max (FVC)}$ will be used in the calculations.

For all respiratory parameters, information of use of respiratory aid (Bi-Pap) will be given in the data listings.

13.2 **Respiratory function testing (handheld ASMA-1 device)**

PEF and FEV1 will be presented as non-normalized values and as percent predicted (see equations in 12.1.1). Information of use of respiratory aid (Bi-Pap) will be given in the data listings.
13.3 Muscle strength and motor function testing

13.3.1 Hand-Held Myometry (HHM)

Knee extension, knee flexion, elbow extension and elbow flexion, measured in Newton units will be presented separately for right and left side. Also, total lower limb score and upper limb score as the sum of extension and flexion results, will be summarized. Upper limb results will also be presented by dominant side. Normalized values (as percentage of normal HHM) will be given for both extension and flexion results. For normalization, the HHM results will be scaled by weight (i.e. knee flexion (N)/ weight (kg)). Average normal HHM values scaled by weight presented by Beenakker (2001) will be used as reference for children aged 4-16. For adults the following formulas from NIH, previously presented by Bohannon (1997), for normalization will be used:

<table>
<thead>
<tr>
<th>Knee flexors</th>
<th>Normalization formulas for adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee extensors (KE) %p, Female</td>
<td>Dominant side: (((KE/\text{weight})/(465.22-84.7-(4.803*\text{age})+(0.325*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td></td>
<td>Non-dominant side: (((KE/\text{weight})/(480.7-95-(4.868*\text{age})+(0.31*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td>Knee extensors (KE) %p, Male</td>
<td>Dominant side: (((KE/\text{weight})/(465.22-(4.803*\text{age})+(0.325*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td></td>
<td>Non-dominant side: (((KE/\text{weight})/(480.7-(4.868*\text{age})+(0.31*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td>Elbow flexion (EF) %p, Female</td>
<td>Dominant side: (((EF/\text{weight})/(188.36-96.5-(0.61*\text{age})+(0.14*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td></td>
<td>Non-dominant side: (((EF/\text{weight})/(188.25-89.2-(0.65*\text{age})+(0.132*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td>Elbow flexion (EF) %p, Male</td>
<td>Dominant side: (((EF/\text{weight})/(188.36-(0.61*\text{age})+(0.14*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td></td>
<td>Non-dominant side: (((EF/\text{weight})/(188.25-(0.65*\text{age})+(0.132*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td>Elbow extensors (EE) %p, Female</td>
<td>Dominant side: (((EE/\text{weight})/(156.49-73-(1.032*\text{age})+(0.116*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td></td>
<td>Non-dominant side: (((EE/\text{weight})/(150.37-71.5-(1.044*\text{age})+(0.126*(4.4482216*\text{weight}))))*100</td>
</tr>
<tr>
<td>Elbow extensors</td>
<td>Dominant side: (((EE/\text{weight})/(156.49-(1.032*\text{age})))</td>
</tr>
</tbody>
</table>
13.3.2 Goniometry
Goniometry results include measurements of knee extension, elbow extension and ankle dorsiflexion, and the results are presented as grades by side (right/left).

13.3.3 Myotools
The Myotools results will be presented as grip strength (kg) and as key pinch (kg) for the dominant hand.

13.3.4 Motor function scales
Jebsen Hand Function Test (JHFT) will be presented as a total score (sec) separately for dominant and non-dominant hand. In addition, data from all subtests will be only listed (without descriptive statistics). For Performance Upper Limb (PUL) and North Star Ambulatory Assessment, total scores will be presented. Moviplate test score values will be presented separately for the dominant hand.

Motor Function Measures (MFM32 or MFM20) will be presented both separately for each dimension (D1 Standing and Transfer, D2 Axial and Proximal Motor Function, D3 Distal Motor function) and as a total score, as % of highest possible scores. In MFM32 the highest possible scores by dimension and in total are D1: 39, D2: 36, D3: 21 and Total: 96. In MFM20 the highest possible scores by dimension and in total are D1: 24, D2: 24, D3: 12 and Total: 60.

13.3.5 Timed tests
The walking distance at 1 and 2 minutes will be presented as meters. In case the subject did not complete the test, the distance at the time the test was stopped will be used for the first missing distance value for the calculation of the descriptive statistics. In this case, the time elapsed when the test was stopped will be shown in the listings.

The time to complete the 10-meter run test and the time to stand from supine will be presented as seconds. In case the subject did not complete the test, the time will be set as missing for the calculation of the descriptive statistics.

Both timed tests will be performed only for ambulatory subjects. Other reasons for not performing the test will be summarized in the listings.

13.3.6 Function scales
The total scores of ACTIVLIM and the Egen Klassification 2 (EK2) will be presented. In addition, the distribution of individual scores by question will be tabulated and the individual scores listed.
14 Deviations from the analyses planned in the study protocol

Per protocol analysis will not be conducted because the disease relevant clinical assessments are a tertiary objective of the study, there is no primary disease relevant clinical assessment and while a protocol deviation which is relevant for one organ system may not be relevant for another organ system, definition of a per protocol population is not feasible. Instead, relevant deviations potentially affecting the disease relevant clinical assessments will be discussed case by case on an individual patient and assessment level where appropriate.

15 Execution of statistical analyses

Statistical analyses will be performed by Oy 4Pharma Ltd and/or Santhera Pharmaceuticals.

16 Hardware and software

Statistical analysis, tables and patient data listings will be performed with SAS® version 9.3 or higher for Windows (SAS Institute Inc., Cary, NC, USA).

17 References

Clinical Study Protocol, Final Protocol (01-Dec-2017), Santhera Pharmaceuticals.

18 Appendices

18.1 Table and figure plan (section 14 in the Study report)

14.1 Demographic data

Table 14.1.1.1 Disposition of subjects
Table 14.1.2.1 Demography and baseline characteristics
Table 14.1.3.1 Analysis datasets
Table 14.1.4.1 Medical history
Table 14.1.5.1 Prior medication and treatments
Table 14.1.5.2 Concomitant medication and treatments
Table 14.1.6.1 Physical examination
Table 14.1.7.1 Pregnancy test results
Table 14.1.8.1 Protocol deviations
Table 14.1.9.1 Compliance to study treatment

14.2 Safety data

14.2.1 Extent of exposure
Table 14.2.1.1 Extent of exposure
14.2.2 Adverse events
Table 14.2.2.1 Summary of all adverse events
Table 14.2.2.2 Treatment emergent adverse events by SOC and PT
Table 14.2.2.3 Treatment emergent adverse events by PT
Table 14.2.2.4 Treatment emergent adverse events by PT and severity
Table 14.2.2.5 Treatment emergent adverse events by PT and causality
Listing 14.2.2.6 Serious treatment emergent adverse events
Listing 14.2.2.7 Treatment emergent adverse events leading to discontinuation of study treatment
Table 14.2.2.8 Treatment emergent adverse events of special interest
Listing 14.2.2.9 Run-in emergent adverse events
14.2.3 Laboratory results
Table 14.2.3.1 Descriptive statistics of laboratory results
Table 14.2.3.2 Shift table for out of reference range laboratory values
Table 14.2.3.3 Shift table for clinically significant values
14.2.4 ECG results
Table 14.2.4.1 Descriptive statistics of heart rate
Table 14.2.4.2 Descriptive statistics of PR
Table 14.2.4.3 Descriptive statistics of QRS
Table 14.2.4.4 Descriptive statistics of RR
Table 14.2.4.5 Descriptive statistics of QT
Table 14.2.4.6.1 Descriptive statistics of QTcF
Table 14.2.4.6.2 Abnormal QTcF values
Table 14.2.4.7.1 Descriptive statistics of QTcB
Table 14.2.4.7.2 Abnormal QTcB values
Table 14.2.4.8 ECG interpretation

14.2.5 Vital signs
Table 14.2.5.1 Descriptive statistics of ulna length, height based on ulna length and weight
Table 14.2.5.2 Descriptive statistics of saturation of peripheral oxygen
Table 14.2.5.3 Descriptive statistics of blood pressure, heart rate, respiratory rate and body temperature
Table 14.2.5.4 Frequency distributions of being able to stand and ambulatory status

14.2.6 Liver abdominal ultrasound results
Table 14.2.6.1 Frequencies for findings in liver abdominal ultrasound results

14.3 Disease relevant clinical assessments

14.3.1 Respiratory function tests
Table 14.3.1.1 Descriptive statistics respiratory function tests
Figure 14.3.1.2 Individual line plots by cohort for respiratory function tests

14.3.2 ASMA-1 results
Table 14.3.2.1 Descriptive statistics of ASMA-1 results
Figure 14.3.2.2 Individual line plots by cohort for ASMA-1 results

14.3.3 Muscle strength and motor function testing
Table 14.3.3.1 Descriptive statistics of Hand-Held Myometry
Table 14.3.3.2 Descriptive statistics of Goniometry results
Table 14.3.3.3 Descriptive statistics of Myogrip results
Table 14.3.3.4 Descriptive statistics of Jebsen Hand Function Test
Table 14.3.3.5 Descriptive statistics of Performance Upper limb assessment
Table 14.3.3.6 Descriptive statistics of North Star Ambulatory Assessment
Table 14.3.3.7 Descriptive statistics of Moviplate test score
Table 14.3.3.8 Descriptive statistics of Motor Function Measure
14.3.4 Timed tests
Table 14.3.4.1 Descriptive statistics of 2 min walking test distances
Table 14.3.4.2 Descriptive statistics of 10 m run test results
14.3.5 Function scores
Table 14.3.5.1 Descriptive statistics of ACTIVLIM results
Table 14.3.5.2 Descriptive statistics of Egen Klassification 2 results
18.2 Data listing plan (section 16 in the Study report)

16.2.1 Demographic listings
Listing 16.2.1.1 Inclusion criteria
Listing 16.2.1.2 Exclusion criteria
Listing 16.2.1.3 Medical history
Listing 16.2.1.4 Concomitant medication
Listing 16.2.1.5 Informed consent / Demographic data / Reproductive status
Listing 16.2.1.6 Protocol deviations
Listing 16.2.1.7 Visit dates
Listing 16.2.1.8 End of study information
Listing 16.2.1.9 Populations
Listing 16.2.1.10 Physical examination

16.2.2 Compliance and/or Drug concentration data
Listing 16.2.2.1 Dispensing of study medication and dosing
Listing 16.2.2.2 Date of first dose of study medication
Listing 16.2.2.3 Collection of medicine and compliance

16.2.3 Individual efficacy response data
Listing 16.2.3.1 Office spirometry
Listing 16.2.3.2 ASMA-1
Listing 16.2.3.3 Muscle strength
Listing 16.2.3.4 Motor function
Listing 16.2.3.5 Timed tests
Listing 16.2.3.6 Functional tests
Listing 16.2.3.7 Muscle imaging

16.2.4 Safety data listings
Listing 16.2.4.1 Adverse events
Listing 18.2.4.2 Vital signs
Listing 18.2.4.3 ECG

16.2.5 Listing of individual laboratory measurements by subject
Listing 16.2.5.1 Lab data listings: Pharmacokinetics
Listing 16.2.5.2 Lab data listings: Haematology
Listing 16.2.5.3 Lab data listings: Biochemistry
Listing 16.2.5.4 Lab data listings: Urine analysis
Listing 16.2.5.5 Lab data listings: Cardiac and urinary biomarkers