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Statistical Analysis Plan  
Behavioral data: Mplus1 will be used to conduct all behavioral analyses to: 1) handle missing 
data via either maximum likelihood estimation or multiple imputation, with both allowing auxiliary 
correlate variable inclusion2,3; an attrition analysis will be performed using SAS PROC MI to 
identify possible non-random attrition dependent variable values (MNAR). If dropout is 
systematic, Selection and Pattern Mixture Models, and their newer mixture versions, 4,5 will be 
used to appropriately address MNAR attrition2, 2) utilize several default parameter estimation 
algorithms (e.g., MLR, MLF, WLSMV) robust to Type-1 errors arising from non-normal response 
data, and 3) to allow additional options (e.g., start values, Cholesky decomposition) in the 
unlikely event of parameter estimation non-convergence. 
Neuroimaging Data: The FSL (FMRIB’s Software Library, Oxford, UK) software package will be 
used for the vast majority of image processing operations and statistical analyses. FSL analyses 
will be augmented by AFNI and/or CONN6 and python scripts. 
Spatial processing and transformation: T1-weighted images will be brain extracted and then 
non-linearly warped into standard anatomic space (MNI152). EPI images will be motion-
corrected, unwarped, and registered to the high resolution T1 structural image and then 
nonlinearly warped to standard space. To facilitate intersubject comparisons and to reduce the 
number of statistically independent comparisons, BOLD images will be smoothed with a 5 mm 
FWHM filter. 
Processing of pCASL images into CBF images: A single fully quantified CBF volume 
(ml/100g/min.) will be calculated from each 4D series of PCASL images7 following motion 
correction, tag-control subtraction, and assessment of T1 signal. CBF images will be 
transformed to standard space as described above.  
Statistical analysis of imaging data: CBF data from each individual will be motion corrected, and 
ratio normalized to minimize the impact of fluctuations in global CBF. A first level fixed effects 
analysis will be executed within FEAT to identify within subject effects. A second level random 
effects analysis will be executed within FEAT to identify between group effects. Clusters of 
activation will be identified using a threshold of Z>3.1 and their statistical significance will be 
estimated according to Gaussian random field theory.8 
BOLD / Connectivity analyses: The aCompCor approach will first be used to reduce variability 
due to physiological and scanner noise9 using a processing pipeline integrating modules from 
FSL and AFNI. Denoised data will then be imported into FEAT. Time courses of activity will be 
extracted from seed regions. These seed regions will be objectively defined on the basis of each 
participant’s anatomy. Next, first level, fixed-effects analyses will be run for each BOLD series to 
identify voxels that have time courses that are significantly correlated with that of the seed. 
Second level analyses will examine effects across imaging series, but within subjects. Finally 
third level random effects analyses will identify differences in functional connectivity according to 
groups. Clusters of activation will be identified using a threshold of Z>3.1 and their statistical 
significance will be estimated according to Gaussian random field theory.8 Age and sex will be 
added as covariates. 
Conjunction analyses: Conjunction analyses will be performed on both CBF and BOLD data in 
order to determine if activation (or connectivity) overlaps between chronic pain groups.10 This 
analysis tests the null hypothesis of no overlap, and as such, is an optimal method to test for 
similar patterns (but not magnitudes) of activation or connectivity.  Statistical significance of 
overlapping clusters will be determined according to Gaussian Random Field theory.8 
Structural analyses: T1-weighted structural data will be analyzed with FSL-VBM as we have 
done previously.11 A regression analysis will be performed using a general linear model to 
examine the relationship between treatment type and grey matter differences across the whole 
brain. Age and sex will be added as covariates. Permutation-based nonparametric testing 



(10,000 permutations) will be used to evaluate this relationship in a voxel-wise fashion. 
Threshold-free cluster enhancement will be utilized to define significant clusters. A familywise 
error corrected P value of P < .05 will be applied to correct for multiple comparisons and to 
identify clusters exhibiting a significant relationship between grey matter density and treatment 
type.   
Multi-task deep Ensemble learning model: We will design the novel multi-task deep Ensemble 
learning model to be a two-level ensemble model (Fig. 6), combining the predictive power of 
both state-of-the-art deep learning and traditional machine learning. We will 1) first build a 
diverse model library. The diversity plays a key role, and it is a necessary and sufficient 
condition in building a powerful stacking ensemble model.12-14 Each input data type (i.e., 
features extracted from fMRI, QST, and 
psychological assessments) will be used 
to create a series of unique machine 
learning models. We will build a model 
library that will consist of a diverse set of 
multiple traditional models, including  
SVM,15 Artificial Neural Networks (ANN),16 
random forest (RF),17 LR,18 Ridge19 and 
least absolute shrinkage and selection 
operator (LASSO).20 Multiple models will 
be trained with different hyperparameter 
settings and training datasets. 2) We will 
then integrate the multiple machine 
learning classifiers from the model library 
using our multi-channel deep neural 
network (DNN) as a fusion model.21,22 The number of channels is designed based on the 
number of models in model library. Each input channel will contain several neural network 
blocks. The multiple input channels will be eventually fused into one output channel through a 
fusion block. Each block will consist of a fully connected layer, a batch normalization layer, and 
a dropout regularization layer. Followed by the fusion block, a softmax output layer will be used 
to predict chronic pain conditions (i.e., migraine, complex regional pain syndrome, 
musculoskeletal pain, functional abdominal pain, as well as heathy controls) and pain trajectory. 
We will perform nested k-fold cross-validation (i.e., training, validation, and testing dataset split 
method) to evaluate our model with multiple metrics, including multi-class accuracy, sensitivity, 
specificity, and area under the receiver operating characteristic curve (AUC). We will perform 
data augmentation on training data to prevent model overfitting using our prior method.23 
Hyperparameters of the model will be optimized based on validation data before testing on 
unseen test datasets. For feature ranking, we will apply a connection weights method24 to 
identify the most discriminative features for each chronic pain condition or trajectory of recovery. 
The deep Ensemble learning model will be implemented using Python, scikit-learn, and 
Tensorflow package. Prior chronic pain studies25 demonstrated that a robust deep learning 
model can be obtained using ~200 samples. Thus, we expect that the sample size (500 
subjects) in this work, combined with data augmentation strategy, is sufficient for our deep 
learning model. During the data collection period, we will develop/optimize analysis pipelines 
with existing patient and control data.  
Power analysis and missing data: Power calculations were performed for neuroimaging data to 
ensure that we have an adequate sample size 1) to detect brain activity changes in hypothesis-
directed analyses and 2) to identify relevant brain mechanisms through deep Ensemble learning 
techniques. Power calculations for neuroimaging data are challenging since such calculations 
depend crucially on effect size as well as properties of the imaging data and statistical approach 

Figure 1. Schematic view of the multi-task deep Ensemble learning model. 



used to deal with the multiple comparisons of >20,000 voxels. We used the NeuroPower tool26 
to calculate statistical power and sample sizes based on our preliminary BOLD in youth with 
migraine. Based on between group comparisons of BOLD functional connectivity data between 
migraine patients and controls, 36 participants (18 participants/group) would be required for 
80% power in between group comparisons. However, contrasts between patient groups would 
likely need greater numbers due to potentially more subtle differences. These comparisons 
were calculated using z-transformed statistical images of the whole brain, a cluster-forming 
threshold of z>3.1 and p<0.05, isotropic smoothness of 5mm, and voxel sizes of 2x2x2mm, and 
a Gaussian Random Field theory-based approach for multiple comparisons. For these complex 
data, statistical power is defined as an 80% probability of correctly detecting an active peak for 
all peaks above the cluster-forming threshold. Power calculations for the deep Ensemble 
learning techniques are nearly impossible to develop given the nature of the analyses, however, 
analogous machine learning approaches with pain data required 109 participants to develop a 
marker for a single group.27 Accordingly, we estimate that 100 participants/group would provide 
adequate power for both hypothesis-directed analyses and machine learning analyses.  
Plan for Robust and Unbiased Results: Our group has a history of producing highly 
reproducible imaging and psychophysical studies. Our original psychophysical finding of offset 
analgesia28 has been replicated in more than 22 papers by laboratories across the world. Our 
original finding of anterior insular activation during pain29  has been replicated by hundreds of 
brain imaging studies.30-33 Our imaging studies have been highly reproducible, in part, because 
we always use whole-brain searches rather than region of interest (ROI) analyses, consistent 
corrections for multiple comparisons using conservative cluster-forming thresholds, and random 
effects statistical models to increase generalizability and to diminish outlier effects. This highly-
powered data set will be analyzed with a conservative, statistically rigorous approach designed 
to maximize reproducibility.34 Towards this end, all analyses will be performed across the entire 
brain and both positive and negative relationships will be assessed and reported.35,36 These 
analyses will be controlled for multiple comparisons by cluster-based methods, such that family-
wise error rates will be held to a p<0.05. Region of interest approaches will be avoided in order 
to minimize errors due to confirmation bias and “double-dipping.”35,36 Analyses will be conducted 
by individuals blinded to group assignment in order to further minimize biases. 
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