Johnson & Johnson Vision Care, Inc.

Clinical Study Protocol

The effects of contact lenses with experimental dye on visual function

Protocol CR-6100

Version: 2.0, Amendment 1.0

Date: 07 June 2018

Investigational Products: senofilcon A with new UV-blocker

Key Words: senofilcon A-based contact lens with new UV-blocker, ACUVUE® OASYS®, senofilcon A, daily disposable, non-dispensing.

Statement of Compliance to protocol, GCP and applicable regulatory guidelines:

This trial will be conducted in compliance with the protocol, ISO 14155,¹ the International Conference on Harmonization Good Clinical Practice E6 (ICH-GCP),² the Declaration of Helsinki,³ and all applicable regulatory requirements.

Confidentiality Statement:

This document contains confidential information, which should not be copied, referred to, released or published without written approval from Johnson & Johnson Vision Care, Inc. The information may not be disclosed to others except to the extent necessary to obtain Institutional Review Board/Independent Ethics Committee approval and informed consent, or as required by International, Federal and State Laws, as applicable. Persons to whom this information is disclosed must be informed that this information is privileged and confidential and that it should not be further disclosed without the written permission of Johnson & Johnson Vision Care, Inc. Any supplemental information that may be added to this document is also confidential and proprietary to Johnson & Johnson Vision Care, Inc. and must be kept in confidence in the same manner as the contents of this document.

TABLE OF CONTENTS

PROTO	COL TITLE, NUMBER, VERSION	5
SPONS	OR NAME AND ADDRESS	5
MEDIC	CAL MONITOR	5
AUTHO	DRIZED SIGNATURES	7
CHANG	GE HISTORY	3
SYNOP	PSIS)
COMM	ONLY USED ABBREVIATIONS AND DEFINITIONS OF TERMS 14	ł
1. IN	TRODUCTION AND BACKGROUND15	5
1.1.	Name and Descriptions of Investigational Products	7
1.2.	Intended Use of Investigational Products17	7
1.3.	Summary of Findings from Nonclinical Studies17	7
1.4.	Summary of Known Risks and Benefits to Human Subjects	7
Uti	1.1. Relevant Literature References and Prior Clinical Data Relevant to Previous ilized Measures: Disability Glare, Discomfort Glare, Photostress Recovery, and romatic Contrast	1
1.5. Study	1	1
	5.1. Relevant Literature References and Prior Clinical Data Relevant to New oposed Measures: Halos, Starbursts, Two-Point Thresholds	
2. ST	UDY OBJECTIVES, ENDPOINTS AND HYPOTHESES)
2.1.	Objectives)
2.2.	Endpoints)
2.3.	Hypotheses	
3. TA	ARGETED STUDY POPULATION)
3.1.	General Characteristics)
3.2.	Inclusion Criteria	3
3.3.	Exclusion Criteria	3
3.4.	Enrollment Strategy	ł
4. ST	UDY DESIGN AND RATIONALE	ł
4.1.	Description of Study Design	ŀ
4.2.	Study Design Rationale	ł
4.3.	Enrollment Target and Study Duration	5
5. TE	ST ARTICLE ALLOCATION AND MASKING	5
5.1.	Test Article Allocation	5

5.2.	Masking			
5.3.	Procedures for Maintaining and Breaking the Masking			
6. ST	UDY INTERVENTION	. 27		
6.1.	Identity of Test Articles			
6.2.	Ancillary Supplies/Products			
6.3.	Administration of Test Articles	. 27		
6.4.	Packaging and Labeling	. 28		
6.5.	Storage Conditions	. 28		
6.6.	Collection and Storage of Samples	. 28		
6.7.	Accountability of Test Articles	. 28		
7. ST	UDY EVALUATIONS	. 29		
7.1.	Time and Event Schedule	. 29		
7.2.	Detailed Study Procedures	. 30		
VIS	SIT 1	. 30		
VIS	SIT 2	. 47		
FIN	JAL EVALUATION	. 50		
7.3.	Unscheduled Visits	. 50		
7.4.	Laboratory Procedures	. 51		
8. SU	BJECTS COMPLETION/WITHDRAWAL			
8.1.	Completion Criteria	. 52		
8.2.	Withdrawal/Discontinuation from the Study	. 52		
9. PR	E-STUDY AND CONCOMITANT INTERVENTION/MEDICATION	. 52		
10. D	EVIATIONS FROM THE PROTOCOL	. 53		
11. S	TUDY TERMINATION	. 53		
12. P	ROCEDURE FOR HANDLING PRODUCT QUALITY COMPLAINTS	. 53		
13. A	DVERSE EVENTS	. 55		
13.1.	Definitions and Classifications	. 55		
13.2.	Assessing Adverse Events	. 57		
13.	2.1. Causality Assessment	. 57		
13.	2.2. Severity Assessment	. 57		
13.3.	Documentation and Follow-Up of Adverse Events	. 58		
13.4.	Reporting Adverse Events	. 59		
13.	4.1. Reporting Adverse Events to Sponsor	. 59		
13.	4.2. Reporting Adverse Events to the Responsible IEC/IRB and Health Authori 60	ties		

13.5	3.5. Event of Special Interest		
13.6	Reporting of Pregnancy		
14.	4. STATISTICAL METHODS		
14.1	General Considerations		
14.2. Sample Size Justification		. 61	
14.3	3. Analysis Populations	. 61	
14.4	4. Level of Statistical Significance	. 61	
14.5	5. Primary Analysis	. 62	
14.6	6. Secondary Analysis	. 62	
14.7	7. Other Exploratory Analyses	. 64	
14.8	8. Interim Analysis	. 64	
14.9	P. Procedure for Handling Missing Data and Drop-Outs	. 64	
14.1	10. Procedure for Reporting Deviations from Statistical Plan	. 64	
15.	DATA HANDLING AND RECORD KEEPING/ARCHIVING	. 64	
15.1	1. Electronic Case Report Form/Data Collection	. 64	
15.2	2. Subject Record	. 65	
16.	DATA MANAGEMENT	. 65	
16.1	1. Access to Source Data/Document	. 65	
16.2	2. Confidentiality of Information	. 66	
16.3	3. Data Quality Assurance	. 66	
17.	MONITORING	. 66	
18.	ETHICAL AND REGULATORY ASPECTS	. 67	
18.1	1. Study-Specific Design Considerations	. 67	
18.2	2. Investigator Responsibility	. 67	
18.3	3. Independent Ethics Committee or Institutional Review Board (IEC/IRB)	. 67	
18.4	4. Informed Consent	. 68	
18.5	5. Privacy of Personal Data	. 69	
19.	STUDY RECORD RETENTION	. 70	
20.	FINANCIAL CONSIDERATIONS	. 70	
21.	21. PUBLICATION		
22.	22. REFERENCES		
APPE	APPENDIX A: PATIENT REPORTED OUTCOMES (STUDY QUESTIONNAIRES) 73		
APPE	NDIX B: PATIENT INSTRUCTION GUIDE	. 78	
APPE	APPENDIX C: PACKAGE INSERT (APPROVED PRODUCT)		

APPENDIX D:
Lens Fitting Characteristics
SUBJECT REPORTED OCULAR SYMPTOMS/PROBLEMS
DETERMINATION OF DISTANCE SPHEROCYLINDRICAL REFRACTIONS 92
BIOMICROSCOPY SCALE
DISTANCE AND NEAR VISUAL ACUITY EVALUATION 105
PATIENT REPORTED OUTCOMES 110
APPENDIX E: DETERMINATION OF EYE DOMINANCY 112
APPENDIX F: IRIS COLOR 113
APPENDIX G: SPECTRUM OF THE UV ACTUATOR 115
APPENDIX H: STARBURST AND HALO IMAGES116
PROTOCOL COMPLIANCE INVESTIGATOR(S) SIGNATURE PAGE 117

TABLE OF CONTENTS

Figure 1: Study Flowchart 13
Figure 2: Schematic of the 2-channel Maxwellian optical system used for our dependent
measures
Figure 3: Actual Testing System
Figure 4: The xenon (dark line) compared to noon day sun light (red line). The line in red is
taken from the NASA solar spectrum measured at the earth's surface ¹³ and adjusted along the
ordinate with respect to the xenon source that will be used in this study
Figure 5: Schematic of the dysphotopsia-measuring device42
Figure 6: Protototype of testing system for two-point spread functions
Figure 7: Prototype of Testing System for halos and starbursts

TABLE OF CONTENTS

Table 1: Test Articles	27
Table 2: Ancillary Supplies	27
Table 3: Time and Events	

PROTOCOL TITLE, NUMBER, VERSION

Title: The effects of contact lenses with new UV-blocker on visual function Protocol Number: CR-6100 Version: 2.0 Date: 07 June 2018

SPONSOR NAME AND ADDRESS

Johnson & Johnson Vision Care (JJVC) 7500 Centurion Parkway Jacksonville, FL 32256

MEDICAL MONITOR

Name: John R. Buch, O.D., M.S., F.A.A.O. Title: Senior Principal Research Optometrist

Email: jbuch@its.jnj.com

The Medical Monitor must be notified by the clinical institution/site by e-mail, fax, or telephone within 24 hours of learning of a Serious Adverse Event. The Medical Monitor may be contacted during business hours for adverse event questions. General study related questions should be directed towards your assigned clinical research associate.

The Medical Monitoring Plan is maintained as a separate document and included in the Trial Master File.

AUTHORIZED SIGNATURES

The signature below constitutes the approval of this protocol and the attachments, and provides the necessary assurances that this trial will be conducted according to all stipulations of the protocol, including all statements regarding confidentiality, and according to local legal and regulatory requirements and applicable U.S. federal regulations,⁴ ICH guidelines,² ISO 14155,¹ and the Declaration of Helsinki.³

Author/Study		
Responsible Clinician	See Electronic Signature Report John R. Buch, O.D., M.S.	DATE
	Sr. Principal Research Optometrist, JJVC	DAIL
Co-author		
Clinical Operations Manager		
Biostatistician		
Data Management		
Approver		
Reviewer		

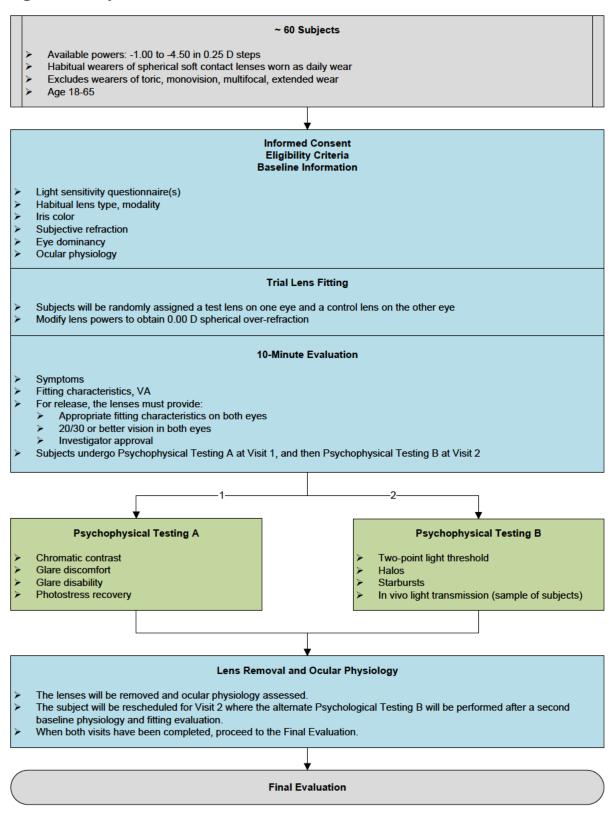
Page 7 of 117

JJVC CONFIDENTIAL

CHANGE HISTORY

Version	Originator	Description of Change(s) and Section	Date
		Number(s) Affected	
1.0	John R. Buch	Original Protocol	28 March 2018
2.0	John R. Buch	Update visit windows from 1-14 day to 1-28	07 June 2018
		days	

SYNOPSIS


Protocol Title	The effects of contact lenses with experimental dye on visual function
Sponsor	JJVC, 7500 Centurion Parkway, Jacksonville, FL 32256
Clinical Phase	Development phase 3
Trial Registration	This study will be registered on ClinicalTrials.gov.
Test Article(s)	Investigational Products: senofilcon A-based contact lens with new UV blocker.
	Control Products: ACUVUE OASYS
Wear and Replacement	Wear Schedule: daily wear
Schedules	Replacement Schedule: daily
Objectives	The objective of this study is to objectively measure potential benefits of the new UV blocker.
Study Endpoints	Primary endpoint(s): two-point light thresholds, halo and starbursts geometry.
	Secondary endpoint(s): photostress recovery (PR) time, glare discomfort threshold (GDc), glare disability threshold (GDs), heterochromatic contrast.
	Other observations: on-eye light transmission, ocular physiology, subjective response.
Study Design	This is a single-site, two-visit, contralateral, non-dispensing, randomized, controlled and subject-masked study. At Visit 1 subjects will be randomly assigned to wear one of two lens wear sequences (left: Test, right: Control or left: Control, right: Test) and will undergo Psychometric Testing A.
	At Visit 2, there are two levels of randomization, first subjects will be assigned randomly to 1 of 2 lens wear sequences (left: Test, right: Control or left: Control, right: Test) and subjects will then be randomized to the order of the Test lens activation (activated/inactivated or inactivated/activated) and will then undergo Psychometric Testing B.
	See the flow chart at the end of the synopsis table for the schematic of the study visits and procedures of main observations (Figure 1: Study Flowchart).
Sample Size	Approximately 66 eligible subjects will be enrolled and randomized into the study. Approximately 60 subjects are targeted to complete the study. Of these, approximately 40 will be in the 18-39 age range, and approximately 20 in the 40-65 age range.

Study Duration	There are two study visits that will last approximately 2-3 hours each. At least 24 hours must separate the end of Visit 1 and the beginning of Visit 2. Once enrolled, all subjects are expected to complete both visits within 28 days. The study enrollment period will be approximately 6 weeks.	
Anticipated Study Population	All subjects will be habitual wearers of spherical soft silicone hydrogel contact lenses that can be fit with the lens powers available for this study. Healthy male and female volunteers of any race and ethnicity will be recruited that are ≥ 18 and ≤ 39 years of age (~2/3 of the total sample) and are ≥ 40 and ≤ 65 years of age (~1/3 of the total sample).	
Eligibility Criteria (Inclusion)	 Potential subjects must satisfy all of the following inclusion criteria to be enrolled in the study: 1. The subject must read, understand, and sign the STATEMENT OF INFORMED CONSENT and receive a fully executed copy of the form. 2. Appear able and willing to adhere to the instructions set forth in this clinical protocol 3. Between 18 and 65 (inclusive) years of age at the time of screening. 4. Be a current spherical soft silicone hydrogel contact lens wearer in both eyes with a minimum of 6 hours/day and 5 days/week wear time over the last 30 days by self-report. Inclusion Criteria after Baseline 5. The subject's vertex-corrected spherical equivalent distance refraction must be in the range of -1.00 through - 4.50 D in each eye. 6. The subject has a best corrected visual acuity of 20/25 or better in each eye. 	

Eligibility Criteria (Exclusion)	Potential subjects who meet any of the following criteria will be excluded from participating in the study:
	 Currently pregnant or breastfeeding. Any ocular or systemic allergies or diseases that may interfere with contact lens wear. Any autoimmune disease or use of medication, which may interfere with contact lens wear. Habitual medications used by successful soft contact lens wearers are considered acceptable. Entropion, ectropion, extrusions, chalazia, recurrent styes, glaucoma, history of recurrent corneal erosions, or aphakia. Any previous, or planned, ocular or interocular surgery (e.g., radial keratotomy, PRK, LASIK, etc.). Any corneal distortion resulting from previous hard or rigid gas permeable contact lens wear. Multifocal, toric or extended wear contact lens correction. Participation in any contact lens or lens care product clinical trial within 14 days prior to study enrollment. History of binocular vision abnormality or strabismus. Any infectious disease (e.g., hepatitis, tuberculosis) or contagious immunosuppressive diseases (e.g., HIV) by self-report. Employee or immediate family member of an employee of clinical site (e.g., Investigator, Coordinator, Technician).
	 Exclusion Criteria after Baseline 12. Any ocular infection. 13. Any grade 3 or greater slit lamp findings (e.g., edema, corneal neovascularization, corneal staining, tarsal abnormalities, conjunctival injection) on the FDA classification scale, any previous history or signs of a contact lens-related corneal inflammatory event (e.g., past peripheral ulcer or round peripheral scar), or any other ocular abnormality that may contraindicate contact lens wear.
Disallowed Medications/Interventions	Use of any prescription or over-the-counter (OTC) medications that may affect contact lens wear from 24 hours prior to receiving the study product through the study period of 2 visits. Habitual medications taken by successful soft contact lens wearers are considered acceptable.

Measurements and Procedures	The new UV-blocker has the potential to provide visual benefits that go beyond the correction of ametropia. This study will objectively measure these benefits using an optical bench set-up.
Microbiology or Other Laboratory Testing	None
Study Termination	The occurrence of one or more Unanticipated Adverse Device Effect (UADE), or any SAE where relationship to study agent cannot be ruled out, will result in stopping further dispensing investigational product. In the event of a UADE or SAE, the Sponsor Medical Monitor may unmask the treatment regimen of subject(s) and may discuss this with the Principal Investigator before any further subjects are enrolled.
Ancillary Supplies/ Study- Specific Materials	EyeCept preservative-free eyedrops, optical bench set-up.
Principal Investigator(s) and Study Institution(s)/Site(s)	A full list of Principal Investigators, clinical sites, and institutions is kept separately from the Study Protocol and is included in the study Trial Master File.

Figure 1: Study Flowchart

COMMONLY USED ABBREVIATIONS AND DEFINITIONS OF TERMS

COMMONLY USE	D ADDREVIATIONS AND DEFINITIONS OF TEL
ADD	Plus Power Required For Near Use
ADE	Adverse Device Effect
AE	Adverse Event/Adverse Experience
BCVA	Best Corrected Visual Acuity
BSCVA	Best Spectacle Corrected Visual Acuity
CFR	Code of Federal Regulations
CIE	Corneal Infiltrative Event
CLUE	Contact Lens User Experience
COAS	Complete Ophthalmic Analysis System
COM	Clinical Operations Manager
CRA	Clinical Research Associate
CRF	Case Report Form
CRO	Contract Research Organization
СТ	Center Thickness
D	Diopter
DMC	Data Monitoring Committee
eCRF	Electronic Case Report Form
EDC	Electronic Data Capture
ETDRS	Early Treatment Diabetic Retinopathy Study
FDA	Food and Drug Administration
GCP	Good Clinical Practice
HIPAA	Health Insurance Portability and Accountability Act
HEV	High Energy Visible
IB	Investigator's Brochure
ICF	Informed Consent Form
ICH	International Council on Harmonisation
IDE	Investigational Device Exemption
IEC	Independent Ethics Committee
IRB	Institutional Review Board
ISO	International Organization for Standardization
ITT	Intent-to-Treat
JJVC	Johnson & Johnson Vision Care, Inc.
LC	Limbus Center
LogMAR	Logarithm of Minimal Angle of Resolution
MedDRA [©]	Medical Dictionary for Regulatory Activities
MOP	Manual of Procedures
MPMVA	Maximum Plus to Maximum Visual Acuity
NIH	National Institutes of Health
OD	Right Eye
OHRP	Office for Human Research Protections
OHSR	Office for Human Subjects Research
OS	Left Eye
OU	Both Eyes
PD	Protocol Deviation

PHI	Protected Health Information
PI	Principal Investigator
PIG	Patient Instruction Guide
PQC	Product Quality Complaint
PRO	Patient Reported Outcome
QA	Quality Assurance
QC	Quality Control
SAE	Serious Adverse Event/Serious Adverse Experience
SAP	Statistical Analysis Plan
SAS	Statistical Analysis System
SD	Standard Deviation
SKU	Stock Keeping Unit
SOP	Standard Operating Procedure
UADE	Unanticipated Adverse Device Effect
USADE	Unanticipated Serious Adverse Device Effect
UV	Ultraviolet
VA	Visual Acuity

1. INTRODUCTION AND BACKGROUND

Photochromic spectacle lenses have been tested for their ability to improve visual functions under intense light conditions.⁵ In that study, 75 subjects were tested in a subject-masked cross-over design (a transparent spectacle lens was compared to a partially activated photochromic). Subjects wearing the photochromic lenses (a variety of types were used) showed significant improvements in photostress recovery, glare disability, and glare discomfort. Recently, a similar effect was found for photochromic contact lenses (unpublished) using a contralateral design. Compared to a clear contact in one eye (the OASYS), a photochromic contact **section** demonstrated improved photostress recovery, glare disability and discomfort (and chromatic contrast, an effect not seen as strongly in the parallel photochromic spectacle study). Although compelling as a first study, two major questions remain.

<u>Question 1:</u> Are the deleterious effects of light scatter continuous? Glare disability specifically refers to visual function under intense light circumstances. Light enters the eye, is scattered by the anterior media (or even surface characteristics of the cornea such as excess lacrimal fluid or even contact lenses), and this scatter interferes with visual function (e.g., by veiling an image). Since this scattering, however, is caused by static features of the eye (ranging from the optical quality of a contact lens to in homogeneities within the cornea or lens), it is also present under low light conditions. Stated differently, scattering is no more excessive in intense light, it is just more aversive. Scattering under low-moderate light conditions may not be as bothersome but it is much more pervasive: to wit, it degrades our vision under all lighting conditions.

One very convenient way of measuring the visual effects of low-level light scatter is based on the two-point-light spread technique .⁶ Two small points of light are used (simulated sunlight is the best to use for ecological validity). The light can either start as one point (subjects then

determine the minimum distance needed to see two points) or two points (the subjects indicate when only one point is perceived). The intensity of the points can be varied from very high to low. As the point spread function of the eye is increased, the distance between when the points are deemed distinct is also proportionally increased.

<u>Question 2:</u> What aspects of glare are improved by filtering? Glare disability is measured by exposing subjects to a bright source of light and then measuring how this light interferes with some form of visual discrimination (either the glare source can be varied or the intensity of the target). In this scenario, one is simply testing how bright light interferes with some aspect of visual function (such as contrast discrimination). It does not, however, measure how the glare light itself is scattered. For example, light can scatter uniformly causing a homogenous veil (similar to a ganzfeld).⁷ It can also spread in what appears like spokes or starbursts (this sometimes referred to as positive dysphotopsia and is caused by high-order aberrations). These appear to be particularly pernicious when individuals have gone through laser correction of myopia and cataract surgery (dysphotopsia is the number one problem following successful cataract surgery, around 51% of patients). They also, however, accompany a plethora of other conditions including dry eye, astigmatism, epiphora, mild-traumatic brain injury, epicanthic eye structure, increased lens density (particularly glycemic), etc. Ritschel et al. (2009) described these autonomous glare phenomenon

"In general the effects of glare can be divided into bloom, a general loss of contrast in the surroundings of the retinal image of the light-source (veil), and flare which comprises the ciliary corona (the sharp needles) and the lenticular halo surrounding the light."⁸

In the previous study, we measured the first aspect of glare (the veil or bloom). In this study, we would like to measure the latter two, the halo and spokes.

Practical implications:

Visual disturbance in the form of halos and starbursts is common; when the issues become clinical, they are often referred to as dysphotopsia. Dysphotopsia, for instance, is common in patients who have had LASIK surgery to correct vision. In fact, it has been argued that these complications are why LASIK has dropped by more than 50 percent, from 1.5 million procedures a year in 2007 to 604K in 2015 (e.g., see <u>lasikcomplications.com</u>). Dysphotopsia is also common in patients who are progressing from early, pre-cataractous vision toward severe (operable) cataract (about half of the population over 70 years). Dysphotopsia is particularly evident during night time driving and is one of the major reasons why older adult patients stop driving at night. It is also a major reason for displanting IOLs that were implanted to correct cataracts.

It is not simply older patients, however, who have these issues. To demonstrate this (unpublished data), we measured halos and visual starbursts in a sample of young subjects (17-22 years of age). The size of the central halo for these young subjects varied by a factor of six (range = 3-13 cm). Their peripheral spokes varied by nearly a factor of three (6-15). Hence, even in these young healthy and largely homogeneous subjects the range (and aversive ness) was very large. This is why a number of spectacle lenses (even contact lenses, see

<u>http://blog.uniqso.com/contact-lenses-help-reduce-halos-glare/</u>) are specifically marketed for their ability to reduce halos and starbursts.

This study will have one Control lens (ACUVUE OASYS), and one Test lens (Investigational). However, the one Test lens will be evaluated under two separate lighting conditions making three study articles altogether.

1.1. Name and Descriptions of Investigational Products

This study will evaluate the Test lens vs. the Control lens. The Test lens is senofilcon A with a new UV blocker, while the Control lens is senofilcon A without the new UV blocker (i.e., ACUVUE OASYS). Further details about the test articles are found in Section 6 of this protocol.

1.2. Intended Use of Investigational Products

The intended use of the investigative product in this study is for correcting myopia and for the attenuation of bright lights. The study articles will be worn contralaterally in a daily wear, daily disposable modality for approximately 2 hours on both days of the study. The study articles will not be dispensed.

1.3. Summary of Findings from Nonclinical Studies

All previous pre-clinical findings were deemed satisfactory prior to proceeding with clinical trials on humans. For the most comprehensive nonclinical information regarding the senofilcon A-based contact lens with new UV blocker, refer to the latest version of the Investigator's Brochure

1.4. Summary of Known Risks and Benefits to Human Subjects

In addition to the correction of their myopia, subjects are likely to experience a reduction of bright lights.

For the most comprehensive risk and benefit information regarding the senofilcon A-based contact lens with new UV blocker, refer to the latest version of the Investigator's Brochure.

1.4.1. Relevant Literature References and Prior Clinical Data Relevant to Previous Utilized Measures: Disability Glare, Discomfort Glare, Photostress Recovery, and Chromatic Contrast

- Colombo, L., Melardi, E., Ferri, P., Montesano, G., Attaalla, S. S., Patelli, F., ... & Rossetti, L. (2017). Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases. BMC ophthalmology, 17(1), 149.
- Huang, W. J., Yang, Y., & Luo, M. R. (2017). Discomfort glare caused by white LEDs having different spectral power distributions. Lighting Research & Technology, 1477153517704996.
- Lee, H. S., Kim, J. Y., Subramaniyam, M., Park, S., & Min, S. N. (2017). Evaluation of quantitative glare technique based on the analysis of bio-signals. Ergonomics, 60(10), 1376-1383.

- Longley, C., & Whitaker, D. (2016). Google Glass Glare: disability glare produced by a head-mounted visual display. Ophthalmic and physiological optics, 36(2), 167-173.
- Mahjoob, M., Heydarian, S., & Koochi, S. (2016). Effect of yellow filter on visual acuity and contrast sensitivity under glare condition among different age groups. International ophthalmology, 36(4), 509-514.
- Mehri, A., Farhang Dehghan, S., Hajizadeh, R., Zakerian, S. A., Mohammadi, H., & Abbasi, M. (2017). Survey of discomfort glare from the headlamps of cars widely used in Iran. Traffic injury prevention, (just-accepted).
- Pierson, C., Bodart, M., Cauwerts, C., & Wienold, J. (2017). Discomfort glare from daylighting: study of factors influencing discomfort glare perception and validation of a universal discomfort glare index. In VELUX Daylight Symposium.
- Pierson, C., Wienold, J., & Bodart, M. (2017). Discomfort glare from daylighting: influence of culture on discomfort glare perception. In CIE 2017 Midterm Meeting.
- Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., & Seidel, H. P. (2009). Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. In Computer Graphics Forum 28, 2, 183-192.
- Rodriguez, R. G., Yamín Garretón, J. A., & Pattini, A. E. (2016). Glare and cognitive performance in screen work in the presence of sunlight. Lighting Research & Technology, 48(2), 221-238.
- Rosli, S. A., Aladin, A. Z., Muhamad, N., & Chen, A. H. (2016). Comparison of visibility threshold on different chromatic contrast objects. Social and Management Research Journal, 13(1), 106-115.
- Sewall, A. A. S., Borzendowski, S. A. W., Tyrrell, R. A., Stephens, B. R., & Rosopa, P. J. (2016). Observers' Judgments of the Effects of Glare on Their Visual Acuity for High and Low Contrast Stimuli. Perception, 45(7), 755-767.
- Siah, W. F., O'Brien, C., & Loughman, J. J. (2017). Macular pigment is associated with glare-affected visual function and central visual field loss in glaucoma. British Journal of Ophthalmology, bjophthalmol-2017.
- Stringham, J. M., O'Brien, K. J., & Stringham, N. T. (2016). Macular carotenoid supplementation improves disability glare performance and dynamics of photostress recovery. Eye and Vision, 3(1), 30.
- Wahl, S., Fornoff, L., Ochakovski, G. A., & Ohlendorf, A. (2017). Disability glare in soft multifocal contact lenses. Contact Lens and Anterior Eye.

See also the Investigator's Brochure.⁹

1.5. Relevant Literature References and Prior Clinical Data Relevant to Proposed Clinical Study

evaluated the same study lenses as the current study on a similar optical bench set up. In that study, the Test and Control lenses were subjected to a 395 nm light source that would normally be present in the outdoor environment on a sunny day. The Test lens performed better than the Control lens in this simulated environment.¹⁰ However, previous studies have shown an indoor benefit of the Test lens over the Control lens and this remains unexplained - particularly since indoor light is typically absent of any significant 395 nm light.¹¹ It is important to understand whether the same optical bench metrics (photostress recovery, discomfort glare, disability glare, and heterochromatic contrast) can help explain the indoor benefit.

The same previous studies that have shown an indoor benefit with the Test lens have shown a benefit with daytime and nighttime driving. Subjects typically report that their vision is better and they have less issues with bright lights. The mechanism behind this remains unexplained. The current study will investigate this area by evaluating the magnitude of dysphotopsia with the Test and Control lens under simulated daytime and nighttime wavelengths.

1.5.1. Relevant Literature References and Prior Clinical Data Relevant to New Proposed Measures: Halos, Starbursts, Two-Point Thresholds

- Artal, Pablo, and Rafael Navarro (1992). Simultaneous measurement of two-point-spread functions at different locations across the human fovea. Applied optics 31.19: 3646-3656.
- Aujla, M., Wolffsohn, J. S., & Sheppard, A. L. (2015). Halo size and subjective complaints of dysphotopsia in a normal population. Investigative Ophthalmology & Visual Science, 56(7), 4314-4314.
- Babizhayev, M. A., Minasyan, H., & Richer, S. P. (2009). Cataract halos: a driving hazard in aging populations. Implication of the Halometer DG test for assessment of intraocular light scatter. Applied ergonomics, 40(3), 545-553.
- Brown, S. M. (2004). Measuring starbursts. Journal of Cataract & Refractive Surgery, 30(12), 2646-2647.
- Davison, J. A. (2000). Positive and negative dysphotopsia in patients with acrylic intraocular lenses. Journal of Cataract & Refractive Surgery, 26(9), 1346-1355.
- De Boer, J. B. (1967). Visual perception in road traffic and the field of vision of the motorist. In Public Lighting (pp. 11-96).
- Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge: University Press.
- Gowrisankaran, S., Sheedy, J. E., & Hayes, J. R. (2007). Eyelid squint response to asthenopia-inducing conditions. Optometry and Vision Science, 84, 611-19.
- Hammond, B. R. (2012). The visual effects of intraocular filters. Scientifica, 2012. doi:10.6064/2012/424965
- Hammond, B. R., Bernstein, B., & Dong, J. (2009). The effect of the AcrySof Natural lens on glare disability and photostress. American Journal of Ophthalmology, 148(2), pp. 272-276.
- Hammond, B. R., Renzi, L. M., Sachak, S., & Brint, S. F. (2010). Contralateral comparison of blue-filtering and non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery. Clinical Ophthalmology, 4, pp. 1465-1473.
- Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53(3), pp. 983-997.
- Mecherikunnel, A. T., & Richmond, J. C. (1980). Spectral distribution of solar radiation. Technical Memorandum 82021, NASA, Goddard Space Flight Center, Greenbelt, Maryland.
- Nahar, N. K., Sheedy, J. E., Hayes, J., & Tai, Y. C. (2007). Objective measurements of lower-level visual stress. *Optometry and Vision Science*, 84(7), 620-629.
- Renzi, L. and Hammond, B.R. (2016). The effects of photochromic lenses on visual performance. Clinical and Experimental Optometry, 1-7.

- Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., & Seidel, H. P. (2009, April). Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. In Computer Graphics Forum (Vol. 28, No. 2, pp. 183-192). Blackwell Publishing Ltd.
- Sayre, R. M., Cole, C., Billhimer, W., Stanfield, J., & Ley, R. D. (1990). Spectral comparison of solar simulators and sunlight. Photodermatol Photoimmunol Photomed, 7, pp. 159-165.
- Sheedy, J. E., Truong, S. D., & Hayes, J. R. (2003). What are the visual benefits of eyelid squinting?. *Optometry and vision science*, 80(11), 740-744.
- Stringham, J. M., Fuld, K., & Wenzel, A. J. (2003). Action spectrum for photophobia. *JOSA A*, 20(10), 1852-1858.
- Valverde, J. A., & Gonza, R. (2003). Simple device for quantifying the influence of halos after lasik surgery. Journal of biomedical optics, 8(4), 663-667.
- Westheimer, G. (1975). Visual acuity and hyperacuity. Investigative Ophthalmology, 14(8), pp. 570-572.

2. STUDY OBJECTIVES, ENDPOINTS AND HYPOTHESES

2.1. Objectives

Primary Objective(s)

The primary objective of this study is to investigate the daytime and nighttime driving benefit seen with previous studies. It will determine whether the Test lens can demonstrate an objective benefit in the absence and presence of a UV/HEV light source over the Control lens. The size of dysphotopsia (halos, starburst, scattering) will be measured.

Secondary Objective(s)

The secondary objective of this study is to investigate the indoor benefit seen with previous studies. It will determine whether the investigational lens can demonstrate an objective benefit in the absence of a UV/HEV light source over the Control lens. Psychophysical measures such a photostress recovery, disability glare, discomfort glare, and chromatic contrast will be used.

Exploratory Objective(s)

The on-eye light transmission will be measured on a sampling of subjects by measuring absolute sensitivity to test lights with activated and inactivated lenses. Slit lamp findings and subjective ratings will be monitored.

2.2. Endpoints

There is one Control lens and one Test lens in this study. However, the Test lens is evaluated with and without an added UV/HEV light source. The testing conditions and endpoints are summarized here with detail provided.

Visits	Compare		Endpoints					
VISIUS	Lens	Photo	Disabil	Discom	CC	Halo	Starb	Scatt
1	A/B	~	~	✓	~	-	-	-
2	A/B A/C	-	-	-	-	~	~	~

• A: Control lens, B: investigational lens without added UV/HEV light, C: investigational lens with added UV/HEV light

• Photo: photostress recovery, Disabil: disability glare, Discom: discomfort glare, CC: chromatic contrast, Halo: haloes, Starb: starbursts, Scatt: scattering

Primary Endpoint(s)

Positive dysphotopsia can take many forms and can manifest itself as scintillating vision (scattering), seeing arcs, flare, flashes, starbursts and haloes. The investigational lens has the potential to decrease these symptoms, particularly in the presence of an added UV/HEV light source. In this study, the investigators will evaluate the degree of light scattering, haloes, and starbursts using a two-point light threshold test and a newly-designed halometer. Light scattering, halos, and starbursts are more obvious at night prompting testing to occur with an inactivated lens. However, they are also present during the day prompting testing to also occur with an activated lens.

Secondary Endpoint(s)

The psychophysical metrics of photostress recovery, disability glare, discomfort glare, and chromatic contrast will be recorded in the absence of an added UV/HEV light source. An optical bench set up will be used. This will relate to indoor vision when the lenses are less likely to be activated.

Other Exploratory Endpoint(s)

Knowing the light transmission through the contact lenses is of particular interest to the development team. A sampling of subjects will undergo additional absolute sensitivity testing to estimate the in vivo light transmission. Slit lamp findings and subjective ratings will be monitored.

2.3. Hypotheses

Primary Hypotheses (each is considered independent)

- 1. Light Scattering
 - a. The Test lens (in the <u>absence</u> of an additional UV/HEV light source) will be statistically lower than the Control lens with respect to light scattering as measured using the two-point light threshold instrument.
 - b. The Test lens (in the <u>presence</u> of an additional UV/HEV light source) will be statistically lower than the Control lens with respect to light scattering as measured using the two-point light threshold instrument.

- 2. Haloes
 - a. The Test lens (in the <u>absence</u> of an additional UV/HEV light source) will be statistically lower than the Control lens with respect to halos. This is measured using the halometer instrument.
 - b. The Test lens (in the <u>presence</u> of an additional UV/HEV light source) will be statistically lower than the Control lens with respect to halos. This is measured using the halometer instrument.
- 3. Starbursts
 - a. The Test lens (in the <u>absence</u> of an additional UV/HEV light source) will be statistically lower than the Control lens with respect starbursts as measured using the halometer instrument.
 - b. The Test lens (in the <u>presence</u> of an additional UV/HEV light source) will be statistically lower than the Control lens with respect starbursts as measured using the halometer instrument.

Secondary Hypotheses (each is considered independent)

- 1. The Test lens (in the absence of an additional UV/HEV light source) will be statistically lower than the Control lens with respect to photostress recovery time (seconds) as measured using the optical bench instrument.
- 2. The Test lens (in the absence of an additional UV/HEV light source) will be statistically higher than the Control lens with respect to disability glare threshold as measured using the optical bench instrument.
- 3. The Test lens (in the absence of an additional UV/HEV light source) will be statistically lower than the Control lens with respect to discomfort glare (eyelid squinting) as measured using the optical bench instrument.
- 4. The Test lens (in the absence of an additional UV/HEV light source) will be statistically higher than the Control lens with respect to chromatic contrast threshold than as measured using the optical bench instrument.

Other Hypotheses

1. In vivo light transmission will be collected on a sampling of subjects for informational purposes only. Slit lamp findings and subjective ratings will be described descriptively.

3. TARGETED STUDY POPULATION

3.1. General Characteristics

Male and female volunteers of any nationality that satisfy the inclusion and exclusion criteria.

3.2. Inclusion Criteria

Potential subjects must satisfy all of the following criteria to be enrolled in the study:

Inclusion Criteria after Screening

- 1. The subject must read, understand, and sign the STATEMENT OF INFORMED CONSENT and receive a fully executed copy of the form.
- 2. Appear able and willing to adhere to the instructions set forth in this clinical protocol
- 3. Between 18 and 65 (inclusive) years of age at the time of screening.
- 4. Be a current spherical soft silicone hydrogel contact lens wearer in both eyes with a minimum of 6 hours/day and 5 days/week wear time over the last 30 days by self-report.

Inclusion Criteria after Baseline

- 5. The subject's vertex-corrected spherical equivalent distance refraction must be in the range of -1.00 through -4.50 D in each eye.
- 6. The subject has a best corrected visual acuity of 20/25 or better in each eye.

3.3. Exclusion Criteria

Potential subjects who meet any of the following criteria will be excluded from participating in the study:

Exclusion Criteria after Screening:

- 1. Currently pregnant or breastfeeding.
- 2. Any ocular or systemic allergies or diseases that may interfere with contact lens wear.
- 3. Any autoimmune disease or use of medication, which may interfere with contact lens wear. Habitual medications used by successful soft contact lens wearers are considered acceptable.
- 4. Entropion, ectropion, extrusions, chalazia, recurrent styes, glaucoma, history of recurrent corneal erosions, or aphakia.
- 5. Any previous, or planned, ocular or interocular surgery (e.g., radial keratotomy, PRK, LASIK, etc.).
- 6. Any corneal distortion resulting from previous hard or rigid gas permeable contact lens wear.
- 7. Multifocal, toric or extended wear contact lens correction.
- 8. Participation in any contact lens or lens care product clinical trial within 14 days prior to study enrollment.
- 9. History of binocular vision abnormality or strabismus.
- 10. Any infectious disease (e.g., hepatitis, tuberculosis) or contagious immunosuppressive diseases (e.g., HIV) by self-report.
- 11. Employee or immediate family member of an employee of clinical site (e.g., Investigator, Coordinator, Technician).

Exclusion Criteria after Baseline

- 12. Any ocular infection.
- 13. Any grade 3 or greater slit lamp findings (e.g., edema, corneal neovascularization, corneal staining, tarsal abnormalities, conjunctival injection) on the FDA classification scale, any previous history or signs of a contact lens-related corneal inflammatory event (e.g., past peripheral ulcer or round peripheral scar), or any other ocular abnormality that may contraindicate contact lens wear.

3.4. Enrollment Strategy

Study subjects will be recruited from the Institution/clinical site's subject database and/or utilizing Independent Ethics Committee (IEC) or Institutional Review Board (IRB) approved materials.

4. STUDY DESIGN AND RATIONALE

4.1. Description of Study Design

The study is a single-site, controlled, randomized, subject-masked, non-dispensing, contralateral design. The study begins with an initial visit (Visit 1 - Day 0), if a subject is found to meet all eligibility criteria, then they will be randomized to one of two lens wear sequences (Left: Test, Right: Control or Left: Control, Right: Test); otherwise a subject will be deemed ineligible for this study.

If a subject is found eligible and was 'dispensed' study lenses at the initial visit, then one additional visit will occur. Visit 2 will occur no sooner than 24 hours after Visit 1 and no later than 28 days after visit 1. Each visit will last approximately 2-3 hours each. Unscheduled visits may occur during the course of the study.

4.2. Study Design Rationale

This study will be executed using a contralateral design. There are several benefits to this choice of design. First, we intend to relate performance with the investigational lens in its activated and inactivated states to baseline light sensitivity. A contralateral design will allow us to compare performance with both activation states within the same individual, ostensibly with the same baseline light sensitivity. Second, other subject factors that can influence visual performance, such as iris color and absorption of test lights via macular pigment, are better controlled using this design. Third, in psychophysical testing, which is the gold standard for many of the visual functions being tested, participants make judgments about some event threshold, such as when an image disappears or how large or bothersome or intense a visual event appears. Participants may have different criteria for threshold events that are internally consistent *within* subjects but can vary *between* subjects. A contralateral design allows the investigational lens to be compared within subjects, with consistent criteria for threshold events. Given the fact that sufficient time will be taken between measures, in some cases 24 hours or more, carryover effects are unlikely.

4.3. Enrollment Target and Study Duration

Approximately 66 subjects will be enrolled to complete approximately 60 at a single site. The point of study enrollment is the execution and completion of the signed Informed Consent document. Subjects will be stratified into one of two age groups using a 2:1 allocation ratio:

- 40 subjects ±3 in age group 18-39
- 20 subjects ±3 in age group 40-65

There are two study visits that will last approximately 2-3 hours each. At least 24 hours must separate the end of Visit 1 and the beginning of Visit 2. Once enrolled, all subjects are expected to complete both visits within 28 days. The study enrollment period will be approximately 6 weeks.

5. TEST ARTICLE ALLOCATION AND MASKING

5.1. Test Article Allocation

Use of the test articles will be randomized using a randomization scheme supplied by the study biostatistician.

This is a single-site, two-visit, contralateral, subject-masked, non-dispensing and randomized study. The study lenses will be worn in a contralateral and random fashion. At visit 1, a block size of (2) sequences will be used to randomly assign subjects to one of two lens wear sequences (Left: Test, Right: Control or Left: Control, Right: Test).

At visit 2, there are two levels of randomization, a block size of (2) sequences will be used to randomly assign subjects to one of two lens wear sequences (Left: Test, Right: Control or Left: Control, Right: Test). Once subjects are randomized to a lens wear sequence, subjects will then be randomized to the order of Test lens activation (activated/inactivated or inactivated).

The random scheme for each visit will be generated by site using the PROC PLAN procedure from SAS Software Version 9.4 or higher (SAS Institute, Cary, NC).

The study site must follow the randomization scheme provided and complete enrollment according to the randomization list and not pre-select or assign subjects. The randomized assignment of subjects will be performed at the first visit prior to the first fitting. The following must have occurred prior to randomization:

- Informed consent has been obtained
- Subject meets all the inclusion / exclusion criteria
- Subject history and baseline information has been collected

5.2. Masking

This is a subject-masked study. Masking will be used to reduce potential bias. Subjects will be unaware of the identity of the investigational product. Investigators and clinical site personnel involved in the data collection will not be masked as to the identity of the investigational product. Although the subjects will not be aware of which study lens is going on which eye, the dynamic nature of the test lens during the assessments may give the identity.

Under normal circumstances, the mask should not be broken until all subjects have completed the study and the database is finalized. Otherwise, the mask should be broken only if specific emergency treatment/course of action would be dictated by knowing the treatment status of the subject. In such cases, the Investigator may, in an emergency, contact the medical monitor. In the event the mask is broken, the Sponsor must be informed as soon as possible. The date, time, and reason for the unmasking must be documented in the subject record. The Investigator is also advised not to reveal the study treatment assignment to the clinical site or Sponsor personnel.

Subjects who have had their treatment assignment unmasked are expected to return for all remaining scheduled evaluations. Subjects who are discontinued will be replaced.

5.3. Procedures for Maintaining and Breaking the Masking

The identity of the study lenses will be masked to the subjects by over labeling the blister pack of the study lens. The label will contain the study number, lot number, sphere power, expiration date and the randomization codes S and N.

The test articles mask shall not be broken unless information concerning the lens type is necessary for the urgent medical treatment of a subject. The Sponsor must be notified before the mask is broken.

When dispensing test articles, the following steps should be followed to maintain randomization codes:

- 1. Investigator or designee (documented on the Delegation Log) will consult the lens fitting schedule/randomization scheme to obtain the test article assignment for that subject prior to dispensing
- 2. Investigator or designee will record the subject's number on the appropriate line of the randomization scheme
- 3. Investigator or designee will pull the appropriate test articles from the study supply. All test articles that are opened, whether dispensed (placed/fit on eye or dispensed outside the clinical site) or not, must be recorded on the Test Article Accountability Log in the "Dispensed" section

Subjects who have had their treatment assignment unmasked are expected to return for all remaining scheduled evaluations. Subjects who are discontinued may be replaced.

6. STUDY INTERVENTION

6.1. Identity of Test Articles

The following contact lenses will be used in this study:

Table 1: Test Articles

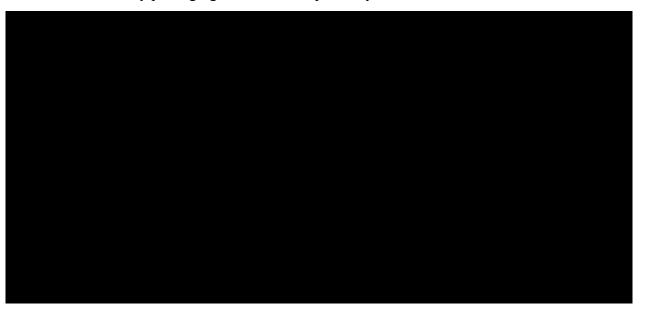
	Test	Control
Name	ECL100	ACUVUE OASYS
Manufacturer	JJV	JJV
Lens Material	senofilcon A	senofilcon A
Nominal Base Curve @ 22 °C	8.4	8.4
Nominal Diameter @ 22 °C	14.0	14.0
Nominal Distance Powers (D)	-1.00 through -4.50	-1.00 through -4.50
Water Content (Optional)	38	38
Center Thickness (Optional)	0.085	0.070
Oxygen Permeability (Dk)	103	103
Wear Schedule in Current Study	Daily	Daily
Replacement Frequency	Daily	Daily
Packaging Form (vial, blister, etc.)	Blister	Blister
Other distinguishing items (e.g., dye, packaging solution, optical design, etc.)	New UV/HEV blocker	NA

Approximately 25 lenses per stock keeping unit (SKU) will be provided based on 66 subjects, 2-periods, contralateral, non-dispensing design, US population normalized for peak SKUs and a safety factor of 50%.

6.2. Ancillary Supplies/Products

The following solutions will be used in this study:

Table 2: Ancillary Supplies


	Solution
Solution Name/Description	EyeCept Rewetting Drops
Manufacturer	Optics Laboratories
Preservative	NA

6.3. Administration of Test Articles

Test articles will be dispensed to subject meeting all eligibility requirements, including any dispensing requirements set forth in this clinical protocol. Subjects will be dispensed an adequate supply of test articles to complete the study. Lost or damaged test articles may be replaced at the discretion of the Investigator and/or the Sponsor.

6.4. Packaging and Labeling

The test articles will be packaged in blisters as the primary packaging. The test article will be over-labeled to mask the subject to the identity of the lens. The test articles will be in investigational cartons sealed with a tamper evident seal, commercial cartons, or in plastic bags as the secondary packaging form. The sample study label is shown below:

6.5. Storage Conditions

Test articles will be maintained at ambient temperatures at the clinical site. Test articles must be kept under secure conditions and stored out of direct sunlight or other source of UV/HEV radiation.

6.6. Collection and Storage of Samples

When possible, any lens or test article associated with an Adverse Events and/or a Product Quality Complaint must be retained and stored in a glass vial with moderate solution pending directions from the sponsor for potential return back to JJVC.

6.7. Accountability of Test Articles

JJVC will provide the Investigator with sufficient quantities of study articles and supplies to complete the investigation. The Investigator is asked to retain all lens shipment documentation for the test article accountability records.

Test article must be kept in a locked storage cabinet, accessible only to those assigned by the Investigator for dispensing. The Investigator may delegate this activity to authorized study site personnel listed on the Site Delegation Log. All test articles must be accounted. This includes:

- 1. What was dispensed for the subject for trial fitting, to wear out of the office, or issued for the subject to replace appropriately between visits
- 2. What was returned to the Investigator unused

3. The number and reason for unplanned replacements

The Investigator will collect all unused test articles from the subjects at the end of the subject's participation. Subject returned unused test articles must be separated from the clinical study inventory of un-dispensed test articles, and must be labeled with the subject number and date of return. Following final reconciliation of test articles by the monitor, the Investigator or monitor will return all unused test articles to JJVC.

If there is a discrepancy between the shipment documents and the contents, contact the study monitor <u>immediately.</u>

Site Instructions for Test Article Receipt and Test Article Accountability for additional information.

7. STUDY EVALUATIONS

7.1. Time and Event Schedule

Table 3: Time and Events

Visit Information	Visit 1	Visit 2
	Screening, Baseline 1,	Baseline 2,
	Psychometric Testing A	Psychometric Testing B
Time Point	Day 1	1-28 Days after Visit 1
Estimated Visit Duration	2.5 hours	2.5 hours
Statement of Informed Consent	Х	
Demographics	х	
Medical History/Concomitant	v	Y
Medications	Х	Х
Habitual Contact Lens Information	Х	
Inclusion/Exclusion Criteria	х	
Baseline Questionnaires	х	
Entrance Visual Acuity	х	Х
Subjective Sphero-Cylindrical		
Refraction	Х	
Slit Lamp Biomicroscopy	х	Х
Lens Selection	х	Х
Lens Insertion & Settling	х	Х
Visual Acuity and Over Refraction	х	Х
Lens Power Modification (if		
applicable)	Х	Х
Subject Reported Ocular Symptoms	х	Х
Lens Fit Assessment	х	Х
Snellen Distance Visual Acuity	Х	Х
Study Assessments (dysphotopsia		
and/or psychophysical testing)	Х	Х

Visit Information	Visit 1	Visit 2
	Screening, Baseline 1,	Baseline 2,
	Psychometric Testing A	Psychometric Testing B
Time Point	Day 1	1-28 Days after Visit 1
Estimated Visit Duration	2.5 hours	2.5 hours
Post-assessment Questionnaire	Х	Х
Study Completion		х

7.2. Detailed Study Procedures

VISIT 1

Subjects must enter Visit 1 wearing their own contact lenses.

	Visit 1: Screening			
Step	Procedure	Details		
1.1	Statement of Informed Consent	Each subject must read, understand, and sign the Statement of Informed Consent before being enrolled into the study. The Principal Investigator or his/her designee conducting the informed consent discussion must also sign the consent form. <u>Note</u> : The subject must be provided a signed		
		copy of this document.		
1.2	Demographics	Record the subject's year of birth, gender, race and ethnicity.		
1.3	Medical History and Concomitant Medications	Questions regarding the subjects' medical history and concomitant medications.		
1.4	Habitual Lenses	Questions regarding the subject's habitual lens type and parameters.		
1.5	Eligibility after Screening	All responses to Screening Inclusion Criteria questions must be answered "yes" and all responses to Exclusion Criteria must be answered "no" for the subject to be considered eligible. If subject is deemed to be ineligible after screening, proceed to Final Evaluation and complete Subject Disposition. Refraction and Biomicroscopy forms are not required.		

		Visit 1: Baseline	
Step	Procedure	Details	
1.6	Baseline Questionnaire	In order to determine how light sensitive participants in the study are at baseline, participants will be administered several questions from various validated instruments that measure self-reported light sensitivity.	
1.7	Entrance Visual Acuity	Record the distance Snellen visual acuity (OD, OS, and OU) to the nearest letter with their habitual contact lens correction in place. Subjects must read the smallest line until at least 50% of the letters are read incorrectly.	
1.8	Remove Habitual Lens	If applicable, the subject's habitual contact lenses will be removed and stored in their own lens case. If they forgot to bring their lens case, one will be provided to them.	
1.9	Subjective Sphero- cylindrical Refraction	Perform subjective best sphere refraction with a phoropter (adopt the maximum plus to maximum visual acuity (MPMVA) approach and use a balancing technique (e.g., the duo- chrome test for binocular balancing, or the binocular blur balancing test, etc.,) and record the best corrected distance visual acuity (OD, OS, and OU) to the nearest letter.	
1.10	Eye Dominancy	The investigator will determine eye dominancy of the subject by first using the +1.00 blur test. If this fails to determine dominancy, then the sighting test will be used. See Appendix E.	Appendix E
1.11	Slit Lamp Biomicroscopy	FDA Slit Lamp Classification Scale will be used to grade the findings and determine eligibility. If any of these slit lamp findings are grade 3 or higher, the subject may not continue at this time, but may return up to one additional time to determine eligibility. If discontinued a final examination must be completed. If the clearance of the fluorescein needs to be expedited, preservative-free rewetting drops or saline may be instilled.	

		Visit 1: Baseline	
Step	Procedure	Details	
1.12	Iris Color	The investigator will record the subject's iris color based on the scale provided (Appendix F).	Appendix F
1.13	Eligibility after Baseline	All responses to Inclusion Criteria questions must be answered "yes" and all responses to Exclusion Criteria questions must be answered "no" for the subject to be considered eligible. If subject is deemed to be ineligible after two baseline attempts at Visit 1, proceed to Final Evaluation and complete all forms.	
1.14	Lens Selection	Assign the study lens based on the randomization scheme. Select the contact lens power based on the refraction. Record the test condition.	
1.15	Lens Insertion	The Investigator or the subject inserts the study lenses. Record the time of lens insertion. Check for lens damage under the slit lamp before proceeding with lens settling. Replace damaged lenses if applicable.	
1.16	Lens Settling 1	Allow the study lenses to settle for a minimum of 5 minutes.	
1.17	Subjective Best Sphere Over Refraction	Perform subjective best sphere refraction over the study lenses (adopt the maximum plus to maximum visual acuity (MPMVA) approach.	
1.18	Lens Power Modification (if applicable)	Adjust the lens power if the subject's best sphere over-refraction is not plano. For any power modification, repeat steps (1.15-1.17). One power modification is allowed.	
1.19	Lens Settling 2	Please wait a total of 10 minutes from final lens insertion to continue.	
1.20	Subject Reported Ocular Symptoms	Subjects will respond to a verbal open-ended symptoms questionnaire.	

		Visit 1: Baseline	
Step	Procedure	Details	
1.21	Visual Acuity	Record the best corrected Snellen <u>distance</u> visual acuity to the nearest letter (OD and OS). Subjects must read the smallest line until at least 50% of the letters are read incorrectly.	
1.22	Subjective Lens Fit Assessment	 Evaluate overall lens fit acceptance (acceptable or unacceptable) based on centration, movement and other fitting characteristics. An unacceptable fit is deemed by one of the following criteria: limbal exposure at primary gaze or with extreme eye movement edge lift excessive movement in primary and up gaze insufficient movement in all three of the following conditions: primary gaze, up gaze, and Josephson push up <u>Note:</u> if lens fit is unacceptable subject will be discontinued from the study. 	
1.23	Continuance	 For the subject to continue in the study, they must meet all three of the following criteria: 1. Visual acuity is 20/30 or better OD and OS 2. The lens fit is acceptable OD and OS 3. Investigator approval. If the Investigator does not approve the wearing of the study lenses for the psychophysical testing, then the study is terminated for that subject. 	
1.24	Lenses Worn in Clinic	 The lenses will be released for approximately two hours. 1. The subjects must wear both study lenses the entire time. 2. The lenses will be worn as daily wear only. 3. Rewetting drops are permitted if needed. 	

	Visit 1: Baseline			
Step	Procedure	Details		
		Note:In the event a lens is lost or damaged, itwill be replaced immediately.Note:A clinic-only-wear Patient InstructionGuide will be provided.		
1.25	Psychophysical Testing Sequence	At Visit 1, all subjects will proceed to Psychophysical Testing A: This includes photostress recovery, discomfort glare, disability glare, and heterochromatic contrast in the absence of an activating light source. Following the psychometric testing by the co- investigator, the subject will return to the principal investigator to complete the study visit as described in steps 1.26-1.28.		
1.26	Lens Removal	The worn study lenses will be removed and discarded.		
1.27	Exit Slit Lamp Biomicroscopy	 FDA Slit Lamp Classification Scale will be used to grade the findings and determine eligibility. Ocular adverse events shall be those that grade 3 or 4 on the FDA scale. The study monitored must be notified immediately. The AE will be followed to resolution at which time the subject will be terminated from the study. If the clearance of the fluorescein needs to be expedited, preservative-free rewetting drops or saline may be instilled. 		
1.28	Exit VA	Record subjects' distance Snellen visual acuity, OD, OS, and OU to the nearest letter with their habitual correction in place (spectacles or contact lenses). Schedule Visit 2 at least 24 hours and no more than 28 days from now.		

Psychophysical Testing A: Photostress / Glare / Chromatic Contrast

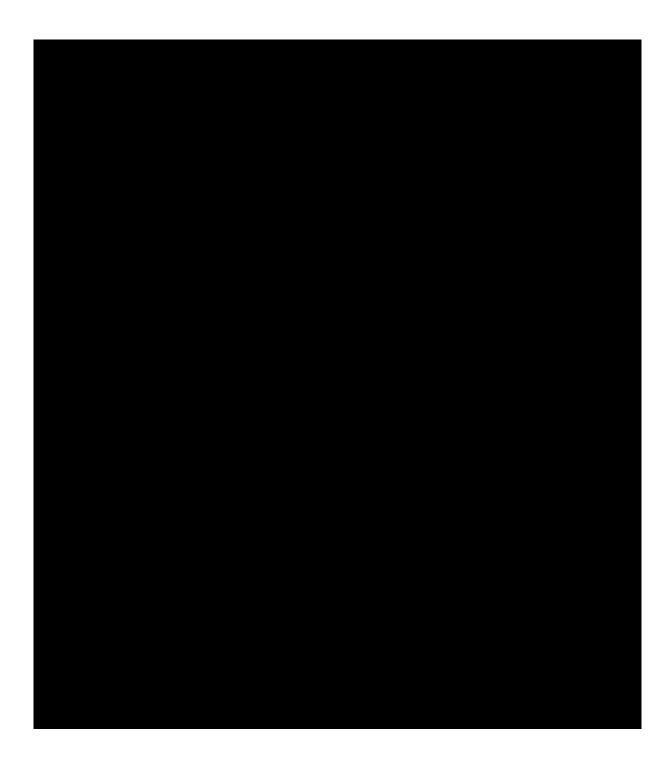
Apparatus

Four efficacy parameters will be measured (heterochromatic contrast threshold (HCT), photostress recovery [PR] time, glare disability [GDs], and glare discomfort [GDc]). All tests will utilize the same apparatus, modified for each parameter. The apparatus used to measure HCT, GDs, GDc, and PR is a two-channel Maxwellian view system and is shown in Figure 2 and Figure 3.

The glare source (annulus/disk) and the visual target will be produced by a 1000 Watt xenon arc point source lamp, with a modified housing that allows dual-channel exit (Newport Optics; Irvine, CA). Alignment of the subject's eye with the optical system will be maintained with a forehead rest and a dental impression bite bar that will be custom-fit for each subject. An auxiliary optical channel with a high-resolution camera and monitor will be used to monitor the pupil during testing to ensure proper fixation and sustained alignment, and will be used to measure GDc. The same apparatus, with small variations, will be used to test HCT, GDs, and PR.

All photometric calibrations will be performed using a PR-650 SpectraScan Colorimeter (Photo Research, Inc., Chatsworth, CA). Wedge and neutral density radiometric calibrations will be performed by using a Graseby Optronics United Detection Technology (UDT) instrument (Orlando, FL). The same UDT instrument will be used before every experimental session to ensure that the total light output of the optical system remains constant and consistent throughout the study. The PR-650 can make measurements down to about 380 nm. An additional radiometer (General Tools and Instruments; New York, NY) will be used to measure output farther down into the UV portion of the spectrum.

Investigational contact lenses


The Investigational lenses will be tested without an additional UV/HEV light source.

The test target

The visual target will be the same in all the visual function tests (HCT, GDc, GDs, PR).

The background

The background channel will be manipulated to produce either an annulus (for GDs) or a three-degree background field (for GDc and PR). For the HCT test, the same three-degree background will be filtered through a 460 nm interference filter (half-power bandwidth = 8 nm; Edmund Optics; Barrington, NJ) in order to produce a monochromatic field. Xenon was selected as the light source because it has the characteristic broad band emission spectrum (as assessed by the SpectraScan colorimeter) with a CIE chromaticity of u' = 0.25, v' = 0.53. Xenon is widely regarded as a good match for sunlight. For example, in a study of 26 solar simulators,¹² the authors noted that xenon-arc light sources match the most accurately. The xenon spectrum that will be produced by this system is shown in Figure 4 as compared to mid-day sunlight.

JJVC CONFIDENTIAL

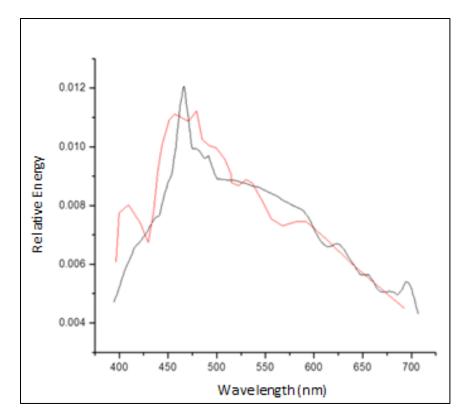


Figure 4: The xenon (dark line) compared to noon day sun light (red line). The line in red is taken from the NASA solar spectrum measured at the earth's surface ¹³ and adjusted along the ordinate with respect to the xenon source that will be used in this study.

JJVC CONFIDENTIAL

	Psychophysical Testing A: Photostress / Glare / Chromatic Contrast		
Т	The psychophysical tests described in Steps 1-4 below may occur in any order. No additional UV/HEV activation light source will be used.		
Step	Procedure	Details	
1	Glare Disability (GDs)	The target stimulus will be presented for 2 seconds on and 1 second off to reduce the chances that subjects will habituate to the stimulus. A second channel will provide an annulus with an approximately 11-degree inner diameter and 12-degree outer diameter, as shown below.	
		Before each trial, the annulus will be set at a level well below that which would cause the target stimulus to be veiled. The experimenter will then adjust, via the neutral-density wedge, the intensity of the annulus until the target stimulus is no longer visible. Participants will indicate that the target has been veiled by pressing a buzzer.	
		The experimenter increases the intensity of light scattering within the subjects' test eyes until they cannot effectively see. Unlike the photostress bleach which is set and standard, the intensity is varied in this test, and hence, so is the aversiveness of the dependent variable. This measurement has been conducted successfully, repeatedly, in the past ¹⁴	
2	Heterochromatic Contrast Threshold (HCT)	Chromatic contrast will be measured as thresholds to a variable wavelength central target presented on a short-wave (460 nm) sky-light background. This aspect of the testing is mostly exploratory to see how the contacts influence chromatic contrast. The relation to filtering is very strong as long as there is differential filtering between the target and the background.	
		Stimulus size Stimulus size	

Page 39 of 117

	Psychophysical Testing A: Photostress / Glare / Chromatic Contrast			
3	Photostress Recovery (PR)	To measure PR time, participants are exposed to the same target used in each of the other visual function tests. Once the participant is comfortably viewing the target, the experimenter will cover the target with a bright, bleaching light. Exposure to the light will cause participants to momentarily lose sight of the target, which will be covered by an afterimage. As the afterimage fades, participants will gradually be able to re-gain sight of the target. PR time will be recorded as the time it takes following exposure to the bleaching light to regain sight of the target.		
4	Glare Discomfort (GDc)	 Glare discomfort (GDc) will be quantified using the squint response and a questionnaire. The discomfort that accompanies exposure to light in excess of an individual's adaptive state is accompanied by contraction of the extraocular muscles (squint). The squint response has been shown to be a valid objective indicator of glare discomfort.¹⁵⁻¹⁷ This procedure was described by Gowrisankaran.¹⁸ Degree of squint is calculated as the ratio of the height of the palpebral fissure under normal lighting conditions compared to maximal squint produced during the photostress exposure. A high-resolution camera (AmScope MU300 digital camera; Irvine, CA) will be used and calibrated against a spatial standard before the start of each day of testing. The resultant videos will be analyzed as still frames using AmScope measurement software (Irvine, CA). To determine subjective ratings of GDc, subjects will be asked to rate the degree of discomfort of the photostressor using a single-item questionnaire OD and OS: How bothersome was the glare that you just experienced? Subjects will have the following response options: Extremely bothersome, Very bothersome, Somewhat bothersome, A little bothersome, Not at all bothersome. 		

Psychometric Testing B: Dysphotopsia Evaluation

Apparatus

Three efficacy parameters will be measured (two-point light spread functions, halos, starbursts) for three lens conditions (OASYS, investigational lens without additional UV/HEV light source, investigational lens with additional UV/HEV light source). All tests will utilize the same apparatus, modified for each parameter.

The general optical apparatus is shown in Figure 6 and Figure 7.

The light source will be produced by a 250 Watt xenon arc point source lamp. Alignment of the subject's eye with the optical system will be maintained with a forehead and chin rest assembly. All photometric calibrations will be performed using an ILT 950 (Peabody, MA). and a Graseby Optronics United Detection Technology (UDT) instrument (Orlando, FL). The same UDT instrument will be used before every experimental session to ensure that the total light output of the optical system remains constant and consistent throughout the study. The PR-650 can make measurements down to about 380 nm. An additional radiometer (General Tools and Instruments; New York, NY) will be used to measure output farther down into the UV portion of the spectrum.

Investigational contact lenses

The investigational lenses will be tested with an additional UV/HEV light source as one of the test conditions. "Activation" will be achieved using an ultraviolet activator consisting of LEDs waveband 365-400 nm that combines with the primary optical path of the system, after the final lens of the optical system (see Figure 7). The spectral output of the ultraviolet LEDs is given in Appendix G. The ultra-violet LEDs will be used, at a low constant rate, while the visual measures (halos, etc.) are being collected. The overall energy at the plane of the eye is 64 μ w/cm2 (measured using the ILT 950, the graph in Appendix G is the light source at the energy we plan to use during the measurement). As a comparison, the UV activator emits 0.07 mw/cm2 whereas mid-day sunlight measured 11 mw/cm2 using the same instrument (1:00 PM, partially cloudy day, September 18, 2017, Athens, GA using a UVA light meter: General UV254SD).

JJVC CONFIDENTIAL

JJVC CONFIDENTIAL

	Psychometric Testing B: Dysphotopsia Evaluation			
	The psychophysical tests described in Steps 1-3 below may occur in any order. All three tests will perfomed twice: once with an UV/HEV activating light source and once with no activating light source. The order of light source testing will be randomized.			
Step	Procedure	Details		
1	Two-point Light Spread Function	These thresholds are defined as the minimum distance that two points of light are completely distinct. An ascending and a descending method of limits will be used. This measurement takes about 10-15 minutes. Record values OD and OS, in mm (2 decimal places).		
2	Starburst	This is defined as the diameter of the light's lateral spread. Subjects will have the nature of starbursts explained using visual aids prior to the experiment. The investigator will adjust a calibrated custom-made micrometer (two sides with reverse threading) to spread two posts out from a central mid-point. Those posts will be used to define the outer boundaries of the starburst image. Ascending and descending methods of limits would be used based on subject feedback. This measurement takes about 10-15		
		Calipers are adjusted until the inner edges are just touching the edges of the starburst pattern. minutes. Record values OD and OS, in mm (2 decimal places). Subjects will respond to a single-item post- starburst questionnaire OD and OS: • How severe / intense was the starburst that you experienced? Subjects will have the following response options: Severe, moderate, mild, not at all.		

	Psychometric Testing B: Dysphotopsia Evaluation				
	The psychophysical tests described in Steps 1-3 below may occur in any order. All three tests will perfomed twice: once with an UV/HEV activating light source and once with no activating light source. The order of light source testing will be randomized.				
Step	Procedure	Details			
3	Halos	Subjects will have the nature of halos explained using visual aids prior to the experiment. The halo measurement will utilize the same light source as the starburst and two- point measures to produce the halo. The same calibrated micrometer from the starburst test will be used to define the outer edges of the halo image (investigator adjusting based on subject feedback). Ascending and descending methods of limits will be used. This measurement takes about 10-15 minutes. Record values OD and OS, in mm (2 decimal places). Subjects will respond to a single-item post-halo questionnaire OD and OS:			
		• How severe / intense was the halo that you experienced? Subjects will have the following response options: Severe, moderate, mild, not at all.			
4	Repeat	The steps above will be repeated but with the alternate light source testing method. The investigator must allow at least 10 minutes to lapse before starting the second round of testing.			
5	On-eye Light Transmission	Measuring the in vivo light transmission (alternatively, the optical density) of ophthalmic lenses has been described in detail elsewhere using similar optical systems. The optical density (OD) of the test lens will be derived by comparing these threshold values to the rhodopsin curve, adjusted to a maximum OD equal to 0.35. This procedure obviously measures the density of all the ocular media. However, because the majority of the absorbance is due to the lens, the convention of referring to these values simply as lens density will be used. Given the extra time needed to perform this measurement, and the fact that on eye light transmission will be constant across all subjects (this reflects properties of the optical system and lenses, themselves, as opposed to visual performance of individuals wearing the lenses), these measurements will be taken in a small subset of subjects (n=5) who, when scheduled, report having enough extra time to complete the measurements.			

VISIT 2

Subjects must enter Visit 2 wearing their own contact lenses.

Visit 2: Treatment 2			
Step	Procedure	Details	
2.1.	Adverse Events and Concomitant Medications Review	Review any changes to the subject's medical history or concomitant medications from the previous study visit. Record any changes, and any adverse events.	
2.2.	Entrance Visual Acuity	Record the distance Snellen visual acuity (OD, OS, and OU) to the nearest letter with their habitual correction in place. Subjects must read the smallest line until at least 50% of the letters are read incorrectly.	
2.3.	Remove Habitual Lens	If applicable, the subject's habitual contact lenses will be removed and stored in their own lens case. If they forgot to bring their lens case, one will be provided to them.	
2.4.	Slit Lamp Biomicroscopy	FDA Slit Lamp Classification Scale will be used to grade the findings and determine eligibility. If any of these slit lamp findings are grade 3 or higher, the subject may not continue at this time, but may return up to one additional time to determine eligibility. If discontinued a final examination must be completed. If the clearance of the fluorescein needs to be expedited, preservative-free rewetting drops or saline may be instilled.	
2.5.	Continuance after Baseline	All responses to Inclusion Criteria questions must be answered "yes" and all responses to Exclusion Criteria questions must be answered "no" for the subject to be considered eligible. This refers to the concomitant medications and slit lamp biomicroscopy. If subject is deemed to be ineligible after two baseline attempts at Visit 2, proceed to Final Evaluation and complete all forms.	
2.6.	Lens Selection	Assign the study lens based on the randomization scheme.	

	Visit 2: Treatment 2			
Step	Procedure	Details		
		Select the contact lens power based on the refraction from Visit 1 or the final lens power from Visit 1. Record the test condition.		
2.7.	Lens Insertion	The Investigator or the subject inserts the study lenses. Record the time of lens insertion. Check for lens damage under the slit lamp before proceeding with lens settling. Replace damaged lenses if applicable.		
2.8.	Lens Settling 1	Allow the study lenses to settle at least 5 minutes before continuing.		
2.9.	Subjective Best Sphere Over Refraction	Perform subjective best sphere refraction over the study lenses (adopt the maximum plus to maximum visual acuity (MPMVA) approach.		
2.10.	Lens Power Modification (if applicable)	Adjust the lens power if the subject's best sphere over-refraction is not plano. For any power modification, repeat steps 2.7- 2.9). One power modification is allowed.		
2.11.	Lens Settling 2	Please wait for at least 10 minutes from final lens insertion to continue.		
2.12.	Subject Reported Ocular Symptoms	Subjects will respond to a verbal open-ended symptoms questionnaire.		
2.13.	Visual acuity	Record the best corrected Snellen <u>distance</u> visual acuity to the nearest letter (OD and OS). Subjects must read the smallest line until at least 50% of the letters are read incorrectly.		
2.14.	Subjective Lens Fit Assessment	 Evaluate overall lens fit acceptance (acceptable or unacceptable) based on centration, movement and other fitting characteristics. An unacceptable fit is deemed by one of the following criteria: limbal exposure at primary gaze or with extreme eye movement edge lift 		

	Visit 2: Treatment 2			
Step	Procedure	Details		
		 excessive movement in primary and up gaze insufficient movement in all three of the following conditions: primary gaze, up gaze, and Josephson push up <u>Note:</u> if lens fit is unacceptable subject will be discontinued from the study. 		
2.15.	Continuance	 For the subject to continue in the study, they must meet all three of the following criteria: Visual acuity is 20/30 or better OD and OS The lens fit is acceptable OD and OS Investigator approval. If the Investigator does not approve the wearing of the study lenses for the psychophysical testing, then the study is terminated for that subject. 		
2.16.	Lenses Worn in Clinic	 The lenses will be released for approximately two hours. 1. The subjects must wear both study lenses the entire time. 2. The lenses will be worn as daily wear only. 3. Rewetting drops are permitted if needed. Note: In the event a lens is lost or damaged, it will be replaced immediately. Note: A clinic-only-wear Patient Instruction Guide will be provided. 		
2.17.	Sequence Randomization	At Visit 2, all subjects will proceed to Psychophysical Testing B: This includes 2- point light threshold, haloes, and starbursts. Five subjects that are willing to undergo further in vivo light transmission testing will have this procedure performed. Following the psychometric testing by the co- investigator, the subject will return to the principal investigator to complete the study visit as described in steps 2.18 – 2.19.		

	Visit 2: Treatment 2			
Step	Procedure	Details		
2.18.	Lens Removal	The worn study lenses will be removed and discarded.		
2.19.	Exit Slit Lamp Biomicroscopy	FDA Slit Lamp Classification Scale will be used to grade the findings and determine eligibility.		
		Ocular adverse events shall be those that grade 3 or 4 on the FDA scale. The study monitored must be notified immediately. The AE will be followed to resolution.		
		If the clearance of the fluorescein needs to be expedited, preservative-free rewetting drops or saline may be instilled.		

FINAL EVALUATION

The final evaluation will ordinarily take place immediately following the last scheduled follow-up visit per the study protocol. It may also take place at any point the subject discontinues the study or is terminated from the study.

Final Evaluation			
Step	Procedure	Details	
F.1	Final Exam Form	Indicate if the subject completed the study successfully. If subject discontinued from the study, indicate the reason.	
F.2	Subjective spherocylindrical Refraction	Perform bare-eye subjective spherocylindrical refraction with a phoropter and record the best corrected <u>distance</u> visual acuity to the nearest letter (OD, OS, and OU).	

7.3. Unscheduled Visits

If, during the investigation, a subject requires an unscheduled visit to the clinical site, the following information will be collected at a minimum:

- Chief complaint prompting the visit. If the reason is an adverse event, the applicable eCRF for the adverse event must be completed and subject record completed as appropriate
- Date and time of the visit and all procedures completed at the unscheduled visit
- Review of adverse event and concomitant medications
- Documentation of any test article dispensed or collected from the subject, if applicable
- Slit lamp findings (using the Slit Lamp Classification Scale)

If the Investigator withdraws a subject from the study, the final study visit case report forms must be completed indicating the reason(s) why the subject was withdrawn. The subject record must be completed documenting the date and primary reason for withdrawal and the study CRA notified.

Any ocular and non-ocular Adverse Events that are ongoing at the time of the study visit will be followed by the Investigator, within licensure, until they have resolved, returned to pretreatment status, stabilized, or been satisfactorily explained. If further treatment i.e., beyond licensure is required, the subject will be referred to the appropriate health care provider.

Unscheduled Visit			
Step	Procedure	Details	
U.1	Chief Complaints	Record the subject's chief complaints for reasons for the unscheduled visit.	
U.2	Adverse Events and Concomitant Medications Review	Review any changes to the subject's medical history or concomitant medications from the previous study visit. Record any changes, and any adverse events.	
U.3	Entrance VA	Record the entrance distance visual acuity (OD, OS and OU) to the nearest letter.	
U.4	Subjective Sphero- cylindrical Refraction	Perform bare-eye subjective spherocylindrical refraction with a phoropter (adopt the maximum plus to maximum visual acuity (MPMVA) approach and use the duo-chrome test for binocular balancing) and record the best corrected <u>distance</u> visual acuity to the nearest letter (OD, OS, and OU).	
U.5	Slit Lamp Biomicroscopy	FDA Slit Lamp Classification Scale will be used to grade the findings. If the clearance of the fluorescein needs to be expedited, preservative-free rewetting drops may be instilled.	
U.6	Exit Visual Acuity	Record the subject's exit distance visual acuity (OD, OS, and OU) to the nearest letter.	

The following information will be collected during an unscheduled visit.

7.4. Laboratory Procedures

The optical bench will be used to measure the light transmission characteristics for all worn Test lenses. The findings are for internal information only and will not be part of the final report.

8. SUBJECTS COMPLETION/WITHDRAWAL

8.1. Completion Criteria

Subjects are considered to have completed the study if they have completed all scheduled visits.

8.2. Withdrawal/Discontinuation from the Study

A subject will be withdrawn from the study for any of the following reasons:

- Subject death during the study period
- Subject withdrawal of consent
- Subject not compliant to protocol (e.g. Subject more than 2 days out of visit window).
- Subject lost to follow-up
- Subject no longer meets eligibility criteria (e.g. the subject becomes pregnant)
- Subject develops significant or serious adverse events causing discontinuation of study lens wear (subjects missing more than 2 days of missed lens wear within a period 1 of week should be discontinued)
- Subjects who have experienced a Corneal Infiltrative Event (CIE)
- Investigator's clinical judgment regarding the subject safety reasons (that it is in the best interest of the subject to stop treatment)
- Subject missed any scheduled study visits
- Subject not compliant with study lens wear schedule
- Subject not successfully dispensed due to lack of efficacy and safety including poor vision, poor comfort or unacceptable fit

For discontinued subjects, the Investigator will:

- Complete the current visit (scheduled or unscheduled)
- Complete the Final Evaluation, indicating the reason that the subject was discontinued from the study
- Record the spherocylindrical refraction with best corrected distance visual acuity
- Collect used test article(s) (worn or brought to the visit) from the subject and discard them, unless otherwise stated in Section 7.2. Collect all unused test article(s) from the subject.

Investigator will discuss with sponsor before enrolling any additional subjects if a subject discontinues from the study prematurely.

In cases where a subject is lost to follow-up, every possible effort must be made to contact the subject and determine the reason for discontinuation/withdrawal. The measures taken to follow up must be documented including two written attempts and a certified letter (or equivalent) as the final attempt.

9. PRE-STUDY AND CONCOMITANT INTERVENTION/MEDICATION

Concomitant medications will be documented during screening and updated during the study. Disallowed medications for this study include: See section 3.3 Concomitant therapies that are disallowed include: See section 3.3

10. DEVIATIONS FROM THE PROTOCOL

Investigator will notify study sponsor upon identification of a protocol deviation. Major protocol deviations must be reported to the sponsor within 24 hours after discovery of the protocol deviation. The Investigator will report deviations per IRB/IEC requirements. All deviations will be tracked and corrective actions implemented as appropriate.

If it becomes necessary for the Investigator to implement a deviation in order to eliminate an immediate hazard to the trial subject, the Investigator may implement the deviation immediately without notification to the sponsor. Within 24 hours after the implemented deviation, the Investigator must notify and provide the rationale to the Sponsor and, as required, the IEC/IRB.

11. STUDY TERMINATION

The occurrence of one or more Unanticipated Serious Adverse Device Effect (USADE), or any SAE where the relationship to study agent cannot be ruled out, may result in stopping further dispensing of test article. In the event of a USADE or SAE, the Sponsor may unmask the treatment regimen for the subject(s) and will discuss this with the Investigator before any further subjects are enrolled.

The Sponsor will determine when a study will be stopped. The Principal Investigator always has the discretion to initiate stopping the study based on patient safety or if information indicates the study's results are compromised.

JJVC reserves the right to terminate the study at any time for any reason. Additionally, the IEC/IRB reserves the right to terminate the study if an unreasonable risk is determined. The study can be terminated by the Principal Investigator at the individual clinical site due to specific clinical observations, if in their opinion, after a discussion with JJVC, it is determined that it would be unwise to continue at the clinical site.

JJVC (and the IEC/IRB and DMC, if applicable) will evaluate all adverse events. If it is determined that an adverse event presents an unreasonable risk, the investigation, or that part of the investigation presenting the risk, will be terminated, as soon as possible.

Should the study be terminated (either prematurely or as scheduled), the Investigator will notify the IEC/IRB and Regulatory Authority as required by local regulatory requirements.

12. PROCEDURE FOR HANDLING PRODUCT QUALITY COMPLAINTS

A Product Quality Complaint (PQC) refers to any written, electronic, or oral communication that alleges deficiencies related to the identity, quality, durability, reliability, safety, effectiveness or performance of test articles after they have been released for clinical trial use.

Potential complaints may come from a variety of sources including but not limited to subjects, clinical research associates (CRA), clinical operations managers (COM), medical monitors, and site personnel, etc. The following are not considered product quality complaints:

- Subject satisfaction inquiries reported via "Subjective Questionnaires" and "Patient Reported Outcomes (PRO)"
- Clinical test articles that are stored improperly or damaged after receipt at the investigational site
- Lens replacements that occur due to drops/fall-outs
- Damage deemed by clinicians or clinical staff to be caused by handling by the user, and not indicative of a quality deficiency (i.e. tears, rips, etc.), only in situations where there is no deficiency alleged by the subject

Within 24 hours of site personnel becoming aware that a PQC has occurred, the PQC must be recorded in the EDC system, which will trigger an automatic email notification to the appropriate COM/CRA and Clinical QA representative. In cases where the EDC system in use is not configured to send automatic notifications or when an EDC system is not used, the COM/CRA is responsible for notifying Clinical QA upon discovery that a PQC has occurred.

Upon receipt of the EDC notification, the COM/CRA will contact the study site to collect additional information which will include:

- Date the complaint was received/recorded in the EDC System (Date of Sponsor Awareness)
- Who received the complaint
- Study number
- Clinical site information (contact name, site ID, telephone number)
- Lot number(s)
- Unique Subject Identifier(s)
- Indication of who first observed complaint (site personnel or subject)
- OD/OS indication, along with whether the lens was inserted
- Any related AE number if applicable
- Detailed complaint description (scheduled/unscheduled visit, wear time, symptoms, resolution of symptoms, etc.)
- Eye Care Provider objective (slit lamp) findings if applicable
- Confirmation of product availability for return (and tracking information, if available), or rationale if product is not available for return

Once a complaint is received, it will be assessed by the COM, CRA, or trained site personnel to determine if it is an Adverse Event/Serious Adverse Event (AE/SAE). If the complaint results in an AE/SAE, the COM/CRA, or trained site personnel will follow Section 13 of this protocol. If the AE/SAE was potentially the result of a product quality related deficiency, these procedures also applies and will be executed in parallel.

In some cases, a PQC form may be generated in EDC by the site in error. In this event, the PQC forms will be marked "Intentionally Left Blank" or "ILB". Justification for ILB must be documented.

JJVC CONFIDENTIAL

13. ADVERSE EVENTS

13.1. Definitions and Classifications

Adverse Event (AE) – An AE is "any untoward medical occurrence, unintended disease or injury, or untoward clinical signs (including abnormal laboratory findings) in subjects, users or other persons, whether or not related to the investigational medical device.

Note 1 to entry: This definition includes events related to the investigational medical device or the comparator.

Note 2 to entry: This definition includes events related to the procedures involved.

Note 3 to entry: For users or other persons, this definition is restricted to events related to investigational medical devices."¹

An AE includes any condition (including a pre-existing condition) that:

- 1. Was not present prior to the study, but appeared or reappeared following initiation of the study
- 2. Was present prior to the study, but worsened during the study. This would include any condition resulting from concomitant illnesses, reactions to concomitant medications, or progression of disease states
- 3. Pregnancy must be documented as an adverse event and must be reported to the clinical monitor and to the Sponsor immediately upon learning of the event

Serious Adverse Event (SAE) – An SAE is any untoward medical occurrence that:

- Results in death
- Is life threatening
- Requires in-patient hospitalization or prolongation of existing hospitalization
- Results in persistent or significant disability/incapacity (e.g., a sight threatening event, a significant persistent or permanent change, impairment, damage, or disruption to the subject's body)
- Is a congenital anomaly/birth defect
- Requires intervention to prevent permanent damage (the use of the test article resulting in a condition which requires medical or surgical intervention to preclude permanent impairment of the body structure or a body function). Important medical events that may not result in death, be life-threatening, or require hospitalization may be considered an SAE when, based upon appropriate medical judgment, they may jeopardize the patient or subject and may require medical or surgical intervention to prevent one of the outcomes listed in the above definition

Diagnoses and conditions that are considered Ocular Serious Adverse Events include, but not limited to:

- Microbial Keratitis (MK)
- Iritis (including cells in the anterior chamber)
- Permanent decrease in best spectacle corrected visual acuity equivalent to 2 acuity lines or greater
- Central Corneal Opacity
- Central Corneal Neovascularization

- Uveitis
- Endophthalmitis
- Hypopyon
- Hyphemia
- Penetration of Bowman's Membrane
- Persistent Epithelial Defect
- Limbal cell Damage leading to Conjunctivalization

Significant Adverse Events – Those events that are usually symptomatic and warrant discontinuation (temporary or permanent) of the test article (excluding Serious Adverse Events).

Diagnoses and conditions that are considered Ocular Significant Adverse Events include, but not limited to the following:

- Contact Lens Induced Peripheral Ulcer (CLPU)
- Significant Infiltrative Events (SIE)
- Superior Epithelial Arcuate Lesions (SEALs)
- Any Temporary Loss of > 2 Lines of BSCVA
- Other grade 3 or higher corneal findings, such as abrasions or edema
- Non-contact lens related corneal events e.g. Epidemic Keratoconjunctivitis (EKC)
- Asymptomatic Corneal Scar
- Any corneal event which necessitates temporary lens discontinuation > 2 weeks

Non-Significant Adverse Events – Those conditions that are usually asymptomatic and usually do not warrant discontinuation (temporary or permanent) of the test article. However, the Investigator may choose to treat as a precautionary measure.

Diagnoses and conditions that are considered Ocular Non-Significant Adverse Events include, but not limited to the following:

- Non-significant Infiltrative Event (NSIE)
- Contact Lens Papillary Conjunctivitis (CLPC)
- Superficial Punctate Keratitis (SPK)
- Conjunctivitis: Bacterial, Viral, Allergic
- Blepharitis
- Meibomianitis
- Contact Dermatitis
- Localized Allergic Reactions
- Any corneal event not explicitly defined as serious or significant adverse event, which necessitates temporary lens discontinuation < 2 weeks

Adverse Device Effect (ADE) – An ADE is an "adverse event related to the use of an investigational medical device.

Note 1 to entry: This definition includes adverse events resulting from insufficient or inadequate instructions for use, deployment, implantation, installation, or operation, or any malfunction of the investigational medical device.

Note 2 to entry: This definition includes any event resulting from use error or from intentional misuse of the investigational medical device."¹

Unanticipated Adverse Device Effect (UADE) – Any serious adverse effect on health or safety or any life-threatening problem or death caused by, or associated with, the test article, if that effect, problem, or death was not previously identified in nature, severity, or degree of incidence in the investigational plan, Investigator's Brochure or protocol, or any other unanticipated serious problem associated with the test article that relates to the rights, safety and welfare of subjects.

13.2. Assessing Adverse Events

In conjunction with the medical monitor, the Investigator will evaluate adverse events to ensure the events are categorized correctly. Elements of categorization will include:

- Seriousness/Classifications (see definition in Section 13.1)
- Causality or Relatedness i.e. the relationship between the test article, study treatment or study procedures and the adverse event (not related; unlikely related; possibly related; related see definition in Section 13.2.1)
- Adverse Event Severity Adverse event severity is used to assess the degree of intensity of the adverse event (mild; moderate; severe for all events see definition in Section 0)
- Outcome not recovered or not resolved; recovering or resolving; recovered or resolved with sequelae; recovered or resolved; death related to adverse event; unknown
- Actions Taken none; temporarily discontinued; permanently discontinued; other

13.2.1. Causality Assessment

Causality Assessment – A determination of the relationship between an adverse event and the test article. The test article relationship for each adverse event should be determined by the investigator using these explanations:

- Not Related- An adverse event that is not related to the use of the test article, study treatment or study procedures
- Unlikely Related An adverse event for which an alternative explanation is more likely, e.g. concomitant treatment, concomitant disease(s), or the relationship of time suggests that a causal relationship is not likely
- Possibly Related An adverse event that might be due to the use of the test article, or to the study treatment or study procedures. An alternative explanation, e.g. concomitant treatment, concomitant disease(s), is inconclusive. The relationship in time is reasonable. Therefore, the causal relationship cannot be excluded
- Related An adverse event that is listed as a possible adverse effect (device) or adverse reaction (drug) and cannot be reasonably explained by an alternative explanation, e.g. concomitant treatment of concomitant disease(s). The relationship in time is very suggestive, e.g. it is confirmed by de-challenge and re-challenge

13.2.2. Severity Assessment

Severity Assessment – A qualitative assessment of the degree of intensity of an adverse event as determined by the Investigator or reported to him/her by the subject. The assessment of

severity is made irrespective of test article, study treatment or study procedure relationship or seriousness of the event and should be evaluated according to the following scale:

- Mild Event is noticeable to the subject, but is easily tolerated and does not interfere with the subject's daily activities
- Moderate Event is bothersome, possible requiring additional therapy, and may interfere with the subject's daily activities
- Severe Event is intolerable, necessitates additional therapy or alteration of therapy and interferes with the subject's daily activities

13.3. Documentation and Follow-Up of Adverse Events

The recording and documenting of adverse events (ocular and non-ocular) begins when the subjects are exposed to the test article, study treatment or study procedure. Adverse events reported before the use of test article, start of study treatment, or study procedures will be recorded as medical history. However, if the condition deteriorates at any time during the study it will be recorded and reported as an AE. Untoward medical events reported after the subject's exit from the study will be recorded as adverse events at the discretion of the Investigator.

Upon finding an adverse event, the Principal Investigator will document the condition in the subject record and in the eCRFs. He/she will complete the Adverse Event /eCRF.

Complete descriptions of all adverse events must be available in the subject record. All Adverse Events including local and systemic reactions not meeting the criteria for "serious adverse events" shall be captured on the appropriate case report form or electronic data system. All adverse events occurring while the subject is enrolled in the study must be documented appropriately regardless of relationship.

It is the Investigator's responsibility to maintain documentation of each reported adverse event. All adverse events will be followed in accordance with applicable licensing requirements. Such documentation will include the following:

- Adverse event (diagnosis not symptom)
- Drawings or photographs (where appropriate) that detail the finding (e.g., size, location, and depth, etc.)
- Date the clinical site was notified
- Date and time of onset
- Date and time of resolution
- Adverse event classification, severity, and relationship to test articles, as applicable
- Treatment regimen instituted, including concomitant medications prescribed, in accordance with applicable licensing requirements
- Any referral to another health care provider if needed
- Outcome, ocular damage (if any)
- Likely etiology
- Best corrected visual acuity at the discovery of the event and upon conclusion of the event

In addition, if an infiltrate(s) is present, he/she will complete the Corneal Infiltrate Assessment eCRF. Where necessary, a culture of the corneal lesion will be collected to determine if the infection is microbial in nature. If cultures are collected, the date of culture collection and laboratory utilized will be recorded.

Changes in the severity of an AE shall be documented to allow an assessment of the duration of the event at each level of intensity to be performed. Adverse events characterized as intermittent require documentation of the onset and duration of each episode. Changes in the assessment of relationship to the Test Article shall also be clearly documented.

Subjects who present with an adverse event shall be followed by the Investigator, within licensure, until all signs and symptoms have returned to pre-treatment status, stabilized, or been satisfactorily resolved. If further treatment beyond licensure is required, the patient will be referred to the appropriate health care provider. The Investigator will use his/her clinical judgment as to whether a subject reporting with an adverse event will continue in the study. If a subject is discontinued from the study, it will be the responsibility of the Investigator to record the reason for discontinuation. The Investigator will also document the adverse event appropriately and complete the Adverse Event eCRF. Any subjects with ongoing adverse events related to the test article, study treatment or study procedures, as of the final study visit date, should be followed to resolution of the adverse event or until referral to an appropriate health care provider, as recommended by the Investigator. Non-ocular adverse events that are not related to the test article, study treatment, or study procedures may be recorded as "ongoing" without further follow-up.

13.4. Reporting Adverse Events

The Investigator will notify the Sponsor of an adverse event by e-mail, facsimile, or telephone as soon as possible and no later than 24 hours from discovery for any serious /significant adverse events, and 2 days from discovery for any non-significant adverse event. In addition, a written report will be submitted by the Principal Investigator to the IEC/IRB according to their requirements (Section 13.4.2). The report will comment whether the adverse event was considered to be related to the test article, study treatment or study procedures.

13.4.1. Reporting Adverse Events to Sponsor

Serious/Significant Adverse Events

The Investigator will inform the sponsor of all serious/significant adverse events occurring during the study period as soon as possible by e-mail, fax, or telephone, but no later than 24 hours following discovery of the event. The Investigator is obligated to pursue and obtain information requested by the Sponsor in addition to that information reported on the eCRF. All subjects experiencing a serious/significant adverse event must be followed up and all outcomes must be reported.

When medically necessary, the Investigator may break the randomization code to determine the identity of the treatment that the subject received. The Sponsor and study monitor should be notified prior to unmasking the test articles.

In the event of a serious/significant adverse event, the Investigator must:

- Notify the Sponsor immediately
- Obtain and maintain in the subject's records all pertinent medical information and medical judgment for colleagues who assisted in the treatment and follow-up of the subject
- Provide the Sponsor with a complete case history which includes a statement as to whether the event was or was not related to the use of the test article
- Notify the IEC/IRB as required by the IEC/IRB reporting procedure according to national regulations

Unanticipated (Serious) Adverse Device Effect (UADE)

In the event of an Unanticipated (Serious) Adverse Device Effect (UADE), the Investigator will submit a report of the UADE to the Sponsor and IEC/IRB as soon as possible, but no later than 24 hours after the Investigator first learns of the effect. This report is in addition to the immediate notification mentioned above.

The Sponsor must conduct an evaluation of the UADE and must report the results of the evaluation to FDA, the IEC/IRB and participating Investigators within 10 working days after the Sponsor first receives notification of the effect.

Non-Serious Adverse Events

All non-serious adverse events, including non-serious adverse device effects, will be reported to the sponsor by the Investigator no later than 2 days from discovery.

13.4.2. Reporting Adverse Events to the Responsible IEC/IRB and Health Authorities

Adverse events that meet the IEC/IRB requirements for reporting must be reported within the IEC/IRB's written guidelines. Each clinical site will refer to and follow any guidelines set forth by their Approving IEC/IRB. Each clinical site will refer to and follow any guidelines set forth by their local governing Health Authorities.

The Sponsor will report applicable Adverse Events to the local health authorities according the written guidelines, including reporting timelines.

13.5. Event of Special Interest

None

13.6. Reporting of Pregnancy

Subjects reporting pregnancy (by self-report) during the study will be discontinued after the event is recorded as an Adverse Event. Once discontinued, pregnant participants and their fetuses will not be monitored for study related purposes. At the Investigator's discretion, the study participant may be followed by the Investigator through delivery. However, this data will not be collected as part of the clinical study database. Pregnant participants are not discontinued from contact lens or solution related studies for safety concerns, but due to general concerns relating to pregnancy and contact lens use. Specifically, pregnant women are discontinued due to fluctuations in refractive error and/or visual acuity that occur secondary to systemic hormonal changes, and not due to unforeseen health risks to the mother or fetus.

14. STATISTICAL METHODS

14.1. General Considerations

Statistical Analysis will be undertaken by the sponsor or under the authority of the sponsor. A general description of the statistical methods to be implemented in this clinical trial is outlined below.

All data summaries and statistical analyses will be performed using the SAS software Version 9.4 (SAS Institute, Cary, NC). Throughout the analysis of data, the results for each subject/eye will be used when available for summarization and statistical analysis. Unscheduled visits will be summarized separately and will be excluded from the statistical analysis.

Summary tables (descriptive statistics and/or frequency tables) will be provided for all baseline variables, efficacy variables and safety variables as appropriate. Continuous variables will be summarized with descriptive statistics (n, mean, standard deviation (SD), median, minimum and maximum). Frequency count and percentage of subjects or eyes within each category will be provided for categorical data.

14.2. Sample Size Justification

The plan is to enroll a maximum of 66 subjects with a minimum target of 60 subjects to complete. The sample size was chosen by the study responsible clinician and was not based on any empirical power calculation. Furthermore, a power calculation cannot be provided for any of the primary endpoints because no historical data is available. This data from this study will be utilized in the sample size calculations for any additional follow-up studies.

14.3. Analysis Populations

Safety Population:

All subjects who were administered any test article excluding subjects who drop out prior to administering any test article. At least one observation should be recorded.

Per-Protocol Population:

All subjects who have successfully completed all visits and did not substantially deviate from the protocol as determined by the trial cohort review committee prior to database hard lock (Per-Protocol Population). Justification of excluding subjects with protocol deviations in the per-protocol population set will be documented in a memo to file.

Intent-to-Treat (ITT) Population:

All randomized subjects regardless of actual treatment and subsequent withdrawal from study or deviation from protocol. At least one observation should be recorded.

14.4. Level of Statistical Significance

Each primary and secondary hypothesis will be tested individually using a type I error rate of 5%.

14.5. Primary Analysis

Light Scattering (Two-point Light Spread Function)

This is defined as the minimum distance (mm) that two points of light are completely distinct. This threshold will be analyzed by a linear mixed model. Sequence of lens wear, lens type, age group, dominant eye and the interaction between lens type and age group will be included in the model as fixed effects. An appropriate covariance structure will be used to model the residual errors between measurements between eyes within a subject. The variance-covariance structure will be selected based on the finite-sample corrected Akaike's Information Criterion Corrected (AICC). The structure that returns the lowest AICC will be deemed the most appropriate structure. Covariance structures under consideration include:

- Unstructured (UN)
- Compound Symmetry (CS)
- Heterogeneous Compound Symmetry (CSH)

Heterogeneous covariance structures across lens type may be considered if necessary. The Kenward and Roger method (Kenward and Roger, 1997)¹⁵ will be used for the denominator degrees of freedom.

Comparisons between lenses (Test inactivated vs Control and Test activated vs Control) will be carried out using 2-sided 95% confidence intervals constructed for the least-square mean (LSM) difference (Test – Control). Statistically significantly lower differences of the Test lens relative to the Control lens will be concluded if the upper limit of the 95% confidence interval is below 0. If the interaction between lens type and age is significant then comparisons between lenses will be made within age group.

<u>Starburst</u>

Starbursts will be quantified by the diameter of the light's lateral spread. A calibrated custommade micrometer (two sides with reverse threading) will be used to spread two posts out from a central mid-point). Those posts can then be used to define the outer boundaries of the starburst image (i.e. the diameter). The diameter of the light's lateral spread will be analyzed and tested in the same manner as described for light scattering above.

<u>Halos</u>

<u>Halos will be quantified</u> by the diameter (mm) of outer edges of the halo image and is measured using the same micrometer as for starbursts and light scattering. The diameter will be analyzed using the same model as described for light scattering.

14.6. Secondary Analysis

Photostress Recovery Time (Seconds)

Photostress recovery time (PSRT) will be evaluated by exposing subjects to an intense light source (10-deg circular broad-band white at ~4.5 log Tds) and will be quantified as the time necessary to regain site of the grating after exposure.

PSRT will be analyzed using a linear mixed model. Sequence of lens wear, lens type, age group dominant eye and all the interaction between lens type and age group will be included as fixed

effects. An appropriate covariance structure will be used to model the residual errors between measurements between eyes within a subject. The variance-covariance structure will be selected based on the finite-sample corrected Akaike's Information Criterion Corrected (AICC). The structure that returns the lowest AICC will be deemed the most appropriate structure. Covariance structures under consideration include:

- Unstructured (UN)
- Compound Symmetry (CS)
- Heterogeneous Compound Symmetry (CSH)

Heterogeneous covariance structures across lens type may be considered if necessary. The Kenward and Roger method (Kenward and Roger, 1997)¹⁵ will be used for the denominator degrees of freedom.

Comparisons between lenses will be carried out using 2-sided 95% confidence intervals constructed for the least-square mean (LSM) difference (Test – Control). Statistically significantly lower differences of the Test lens relative to the Control lens will be concluded if the upper limit of the 95% confidence interval is below 0. If the interaction between lens type and age is significant then comparisons between lenses will be made within age group.

Disability Glare Threshold (Change in log relative energy level)

Glare disability threshold (GDT) (change in log relative energy level) will be evaluated by exposing subjects to various intensity of a white-light annulus (10-geg diameter) and will be quantified by the log relative energy level necessary to obscure a central target.

GDT will be analyzed and tested in the same manner as described for PSRT.

Discomfort Glare (change in palpebral fissure height (mm))

Glare discomfort (GD) will be evaluated by squint response of the extraocular muscles and by a subjective questionnaire regarding the patients' comfort. Squint response will be captured by using a high-resolution camera for each subject eye. The resultant videos will then be analyzed as still frames. Squint response will be quantified as the calculated ratio of the height of the palpebral fissure under normal light conditions compared to maximal squint produced during the Photostress exposure. GD will be analyzed in the same manner as described for PSRT.

Comparisons between lenses will be carried out using 2-sided 95% confidence intervals constructed for the least-square mean (LSM) difference (Test – Control). Statistically significantly higher differences of the Test lens relative to the Control lens will be concluded if the lower limit of the 95% confidence interval is above 0. If the interaction between lense type and age is significant then comparisons between lenses will be made within age group.

Heterochromatic Contrast Threshold (HCT)

Heterochromatic contrast thresholds will be evaluated using a variable wavelength central target presented on a short-wave (460nm) sky-light background and will be quantified by the amount of light absorbed by the macular.

HCT will be analyzed and tested in the same manner as GD.

14.7. Other Exploratory Analyses

In vivo light transmission and slit lamp findings will be descriptively summarized for each lens type.

14.8. Interim Analysis

There will not be an interim analysis conducted on this study.

14.9. Procedure for Handling Missing Data and Drop-Outs

Missing or spurious values will not be imputed. The count of missing values will be included in the summary tables and listings.

Subject dropout is expected to be one of the main reasons of missing data in this clinical trial. Past clinical trials don't provide the evidence that subject dropout is systematic or not-atrandom. To evaluate the impact of missing data, sensitivity analysis will be conducted using multiple imputation methods if the proportion of subject dropout is greater than the 15%. The SAS/STAT procedures PROC MI and PROC MIANALYZE will be utilized with a parametric regression method used to make at least 10 imputations.

14.10. Procedure for Reporting Deviations from Statistical Plan

The analysis will be conducted according to that specified in above sections. There are no known reasons for which it is planned to deviate from these analysis methods. If for any reason a change is made, the change will be documented in the study report along with a justification for the change.

15. DATA HANDLING AND RECORD KEEPING/ARCHIVING

15.1. Electronic Case Report Form/Data Collection

The data for this study will be captured on electronic case report forms (eCRFs) using an EDC system (Bioclinica). An authorized data originator will enter study data into the eCRFs using the EDC system. Data collected on equipment that is not captured in EDC will be formatted to the specification of the JJVC database manager and sent to JJVC for analysis.

The follow data testing/measurements will be calculated and entered into the EDC at the study site.

- Light Scattering
- Starburst
- Halos
- Photostress Recovery Time
- Disability Glare Threshold
- Discomfort Glare
- Heterochromatic Contrast Threshold

The clinical data will be recorded on dedicated eCRFs specifically designed to match the study procedures for each visit. Once completed, the eCRFs will be reviewed for accuracy and completeness and signed by the Investigator. The sponsor or sponsor's representatives will be authorized to gain access to the subject recordation for the purposes of monitoring and auditing the study.

Edit checks, electronic queries, and audit trails are built into the system to ensure accurate and complete data collection. Data will be transmitted from the clinical site to a secure central database as forms are completed or updated, ensuring information accuracy, security, and confidentiality. After the final database lock, the Investigator will be provided with Individual Patient Profiles (IPP) including the full audit trail on electronic media in PDF format for all of the study data. The IPP must be retained in the study files as a certified copy of the source data for the study.

The content and structure of the eCRFs are compliant with ISO14155:2011.¹

15.2. Subject Record

At a minimum, subject record should be available for the following:

- subject identification
- eligibility
- study identification
- study discussion
- provision of and date of informed consent
- visit dates
- results of safety and efficacy parameters as required by the protocol
- a record of all adverse events
- follow-up of adverse events
- medical history and concomitant medication
- test article receipt/dispensing/return records
- date of study completion
- reason for early discontinuation of test article or withdrawal from the study, if applicable

The subject record is the eCRF or an external record. The author of an entry in the subject record must be identifiable. The first point of entry is considered to be the source record.

Adverse event notes must be reviewed and initialed by the Investigator.

16. DATA MANAGEMENT

16.1. Access to Source Data/Document

The Investigator/Institution will permit trial-related monitoring, audits, IEC/IRB review and regulatory inspection(s) by providing direct access to source data/documents. Should the

clinical site be contacted for an audit by an IEC/IRB or regulatory authority, JJVC must be contacted and notified in writing within 24 hours.

16.2. Confidentiality of Information

Information concerning the investigational product and patent application processes, scientific data or other pertinent information is confidential and remains the property of JJVC. The Investigator may use this information for the purposes of the study only. It is understood by the Investigator that JJVC will use information developed in this clinical study in connection with the development of the investigational product and therefore may disclose it as required to other clinical investigators and to regulatory agencies. In order to allow the use of the information derived from this clinical study, the Investigator understands that he/she has an obligation to provide complete test results and all data developed during this study to the Sponsor.

16.3. Data Quality Assurance

Steps will be taken to ensure the accuracy and reliability of data, include the selection of qualified investigators and appropriate clinical sites and review of protocol procedures with the Principal Investigator. The Principal Investigator, in turn, must ensure that all Sub-Investigators and clinical site personnel are familiar with the protocol and all study-specific procedures and have appropriate knowledge of the study article.

Training on case report form completion will be provided to clinical site personnel before the start of the study. The Sponsor will review case report forms for accuracy and completeness remotely during the conduct of the study, during monitoring visits, and after transmission to data management. Any data discrepancies will be resolved with the Investigator or designee, as appropriate.

Quality Assurance representatives from JJVC may visit clinical sites to review data produced during the study and to access compliance with applicable regulations pertaining to the conduct of clinical trials. The clinical sites will provide direct access to study-related source data/documents and reports for the purpose of monitoring and auditing by JJVC and for inspection by local and regulatory authorities.

17. MONITORING

The study monitors will maintain close contact with the Principal Investigator and the Investigator's designated clinical site personnel. The monitor's responsibilities will include:

- Ensuring that the investigation is being conducted according to the protocol, any subsequent amendments, and regulatory requirements are maintained
- Ensuring the rights and wellbeing of subjects are protected
- Ensuring adequate resources, including facilities, laboratories, equipment, and qualified clinical site personnel
- Ensuring that protocol deviations are documented with corrective action plans, as applicable
- Ensuring that the clinical site has sufficient test article and supplies

- Clarifying questions regarding the study
- Resolving study issues or problems that may arise
- Reviewing of study records and source documentation verification in accordance with the monitoring plan

18. ETHICAL AND REGULATORY ASPECTS

18.1. Study-Specific Design Considerations

Potential subjects will be fully informed of the risks and requirements of the study and, during the study, subjects will be given any new information that may affect their decision to continue participation. Subjects will be told that their consent to participate in the study is voluntary and may be withdrawn at any time with no reason given and without penalty or loss of benefits to which they would otherwise be entitled. Only subjects who are fully able to understand the risks, benefits, and potential adverse events of the study, and provide their consent voluntarily will be enrolled.

18.2. Investigator Responsibility

The Principal Investigator is responsible for ensuring that the clinical study is performed in accordance with the signed agreement, the investigational plan, Section 4 of the ICH E6 guidelines on Good Clinical Practice (GCP),² and applicable regulatory requirements. GCP is an international ethical and scientific quality standard for designing, conducting, recording, and reporting studies that involve the participation of human subjects. Compliance with this standard provides public assurance that the rights, safety, and well-being of study subjects are protected, consistent with the principles of the Declaration of Helsinki 64th WMA General Assembly 2013³ and that the clinical study data are credible. The Investigator must maintain clinical study files in accordance with Section 8 of the ICH E6 guidelines on Good Clinical Practice (GCP),² and applicable regulatory requirements.

18.3. Independent Ethics Committee or Institutional Review Board (IEC/IRB)

Before the start of the study, the Investigator (or Sponsor when applicable) will provide the IEC/IRB with current and complete copies of the following documents (where applicable):

- Final protocol and, if applicable, amendments
- Sponsor-approved informed consent form (and any other written materials to be provided to the subjects)
- Investigator's Brochure (or equivalent information) and amendments
- Sponsor-approved subject recruitment materials
- Information on compensation for study-related injuries or payment to subjects for participation in the study
- Investigator's curriculum vitae, clinical licenses, or equivalent information (unless not required, as documented by IEC/IRB)
- Information regarding funding, name of the Sponsor, institutional affiliations, other potential conflicts of interest, and incentives for subjects
- Any other documents that the IEC/IRB requests to fulfill its obligation

This study will be undertaken only after IEC/IRB has given full approval of the final protocol, amendments (if any), the informed consent form, applicable recruiting materials, and subject compensation programs, and the Sponsor has received a copy of this approval. This approval letter must be dated and must clearly identify the documents being approved.

During the study, the Investigator (or Sponsor when applicable) will send the following documents to the IEC/IRB for their review and approval, where appropriate:

- Protocol amendments
- Revision(s) to informed consent form and any other written materials to be provided to subjects
- If applicable, new or revised subject recruitment materials approved by the Sponsor
- Revisions to compensation for study-related injuries or payment to subjects for participation in the study
- Investigator's Brochure amendments or new edition(s)
- Summaries of the status of the study (at least annually or at intervals stipulated in guidelines of the IEC/IRB)
- Reports of adverse events that are serious, unanticipated, and associated with the test articles, according to the IRB's requirements
- New information that may adversely affect the safety of the subjects or the conduct of the study
- Major protocol deviations as required by the IEC/IRB
- Report of deaths of subjects under the Investigator's care
- Notification if a new Investigator is responsible for the study at the clinical site
- Any other requirements of the IEC/IRB

For protocol amendments that increase subject risk, the amendment and applicable informed consent form revisions must be submitted promptly to the IEC/IRB for review and approval before implementation of the change(s).

At least once a year, the IEC/IRB will review and reapprove this clinical study. This request should be documented in writing.

At the end of the study, the Investigator (or Sponsor where required) will notify the IEC/IRB about the study completion. Documentation of this notification must be retained at the clinical site and a copy provided to the CRO or Sponsor as applicable.

18.4. Informed Consent

Each subject must give written consent according to local requirements after the nature of the study has been fully explained. The consent form must be signed before performance of any study-related activity. The consent form that is used must be approved by both the Sponsor and by the reviewing IEC/IRB. The informed consent is in accordance with principles that originated in the Declaration of Helsinki,³ current ICH² and ISO 14155¹ guidelines, applicable regulatory requirements, and Sponsor Policy.

Before entry into the study, the Investigator or an authorized member of the clinical site personnel must explain to potential subject the aims, methods, reasonably anticipated benefits, and potential hazards of the study, and any discomfort it may entail. Subjects will be informed that their participation is voluntary and that they may withdraw consent to participate at any time.

The subject will be given sufficient time to read the informed consent form and the opportunity to ask questions. After this explanation and before entry into the study, consent should be appropriately recorded by means of the subject's dated signature. After having obtained the consent, a copy of the informed consent form must be given to the subject.

18.5. Privacy of Personal Data

The collection, processing and disclosure of personal data and medical information related to the Study Subject, and personal data related to Principal Investigator and any clinical site personnel (e.g., name, clinic address and phone number, curriculum vitae) is subject to compliance with the Health Information Portability and Accountability Act (HIPAA)¹⁹ and other applicable personal data protection and security laws and regulations. Appropriate measures will be employed to safeguard these data, to maintain the confidentiality of the person's related health and medical information, to properly inform the concerned persons about the collection and processing of their personal data, to grant them reasonable access to their personal data and to prevent access by unauthorized persons.

All information obtained during the course of the investigation will be regarded as confidential. All personal data gathered in this trial will be treated in strictest confidence by Investigators, monitors, Sponsor's personnel and IEC/IRB. No data will be disclosed to any third party without the express permission of the subject concerned, with the exception of Sponsor personnel (monitor, auditor), IEC/IRB and regulatory organizations in the context of their investigation related activities that, as part of the investigation will have access to the CRFs and subject records.

The collection and processing of personal data from subjects enrolled in this study will be limited to those data that are necessary to investigate the efficacy, safety, quality, and utility of the investigational product(s) used in this study.

These data must be collected and processed with adequate precautions to ensure confidentiality and compliance with applicable data privacy protection laws and regulations. The Sponsor ensures that the personal data will be:

• processed fairly and lawfully

- collected for specified, explicit, and legitimate purposes and not further processed in a way incompatible with these purposes
- adequate, relevant, and not excessive in relation to said purposes
- accurate and, where necessary, kept current

Explicit consent for the processing of personal data will be obtained from the participating subject before collection of data. Such consent should also address the transfer of the data to other entities and to other countries.

The subject has the right to request through the Investigator access to his personal data and the right to request rectification of any data that are not correct or complete. Reasonable steps should be taken to respond to such a request, taking into consideration the nature of the request, the conditions of the study, and the applicable laws and regulations.

Appropriate technical and organizational measures to protect the personal data against unauthorized disclosures or access, accidental or unlawful destruction, or accidental loss or alteration must be put in place. Sponsor personnel whose responsibilities require access to personal data agree to keep the identity of study subjects confidential.

19. STUDY RECORD RETENTION

In compliance with the ICH/GCP guidelines,² the Investigator/Institution will maintain all CRFs and all subject records that support the data collected from each subject, as well as all study documents as specified in ICH/GCP² and all study documents as specified by the applicable regulatory requirement(s). The Investigator/Institution will take measures to prevent accidental or premature destruction of these documents.

Essential documents must be retained until at least two (2) years after the last approval of a marketing application in an ICH region and until there are no pending or contemplated marketing applications in an ICH region or until at least two (2) years have elapsed since the formal discontinuation of clinical development of the investigational product. These documents will be retained for a longer period if required by the applicable regulatory requirements or instructed by the Sponsor. It is the responsibility of the Sponsor to inform the Investigator/Institution as to when these documents no longer need to be retained.

If the responsible Investigator retires, relocates, or for other reasons withdraws from the responsibility of keeping the study records, custody must be transferred to a person who will accept the responsibility. The Sponsor must be notified in writing of the name and address of the new custodian. Under no circumstance shall the Investigator relocate or dispose of any study documents before having obtained written approval from the Sponsor.

If it becomes necessary for the Sponsor or the appropriate regulatory authority to review any documentation relating to this study, the Investigator must permit access to such reports. If the Investigator has a question regarding retention of study records, he/she should contact JJVC.

20. FINANCIAL CONSIDERATIONS

Remuneration for study services and expenses will be set forth in detail in the Clinical Research Agreement. The Research Agreement will be signed by the Principal Investigator and a JJVC management representative prior to study initiation.

JJVC reserves the right to withhold remuneration for costs associated with protocol violations such as:

- Continuing an ineligible subject in the study
- Scheduling a study visit outside the subject's acceptable visit range

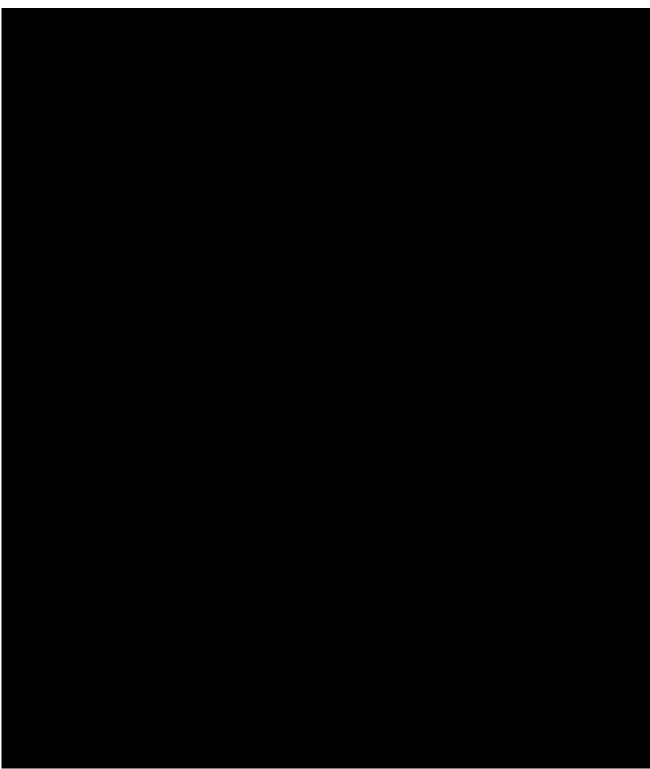
JJVC reserves the right to withhold final remuneration until all study related activities have been completed, such as:

- Query resolution
- Case Report Form signature
- Completion of any follow-up action items

21. PUBLICATION

This study will be registered on ClinicalTrials.gov by the Sponsor.

22. REFERENCES


- ISO 14155:2011: Clinical investigation of medical devices for human subjects Good clinical practice.
- 2. International Conference on Harmonization Good Clinical Practice E6 (ICH-GCP): http://www.ich.org/products/guidelines/efficacy/article/efficacy-guidelines.html
- 3. Declaration of Helsinki Ethical principles for Medical Research Involving Human Subjects. <u>http://www.wma.net/en/30publications/10policies/b3/index.html</u>.
- 4. United States (US) Code of Federal Regulations (CFR). In <u>https://www.gpo.gov/fdsys/browse/collectionCfr.action?collectionCode=CFR</u> (Ed.).
- 5. Renzi-Hammond, L.M. and B.R. Hammond, *The effects of photochromic lenses on visual performance*. Clinical and Experimental Optometry, 2016. **99**(6): p. 568-574.
- 6. Artal, P. and R. Navarro, *Simultaneous measurement of two-point-spread functions at different locations across the human fovea*. Applied Optics, 1992. **31**(19): p. 3646.
- 7. Avant, L., Vision in the Ganzfeld. Psychological Bulletin, 1965. 64(4): p. 246-258.
- 8. Ritschel, T., et al., *Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye.* Computer Graphics Forum, 2009. **28**(2): p. 183-192.
- 9. Buch, J.Clinical Study Protocol
 Investigator Brochure

 Evaluation of Lenses Made with new UV-Blocker
 2018 09 January
- 10. Hammond, L.R. Clinical Study Report (). The effects of contact lenses with experimental dye on visual performance measured under intense light conditions. 2016 01 March
- 12. Sayre, R., et al., *Spectral comparison of solar simulators and sunlight*. Photodermatol Photoimmunol Photomed, 1990. 7: p. 159-165.
- 13. Mecherikunnel, A.T. and J.C. Richmond. (1980). Spectral distribution of solar radiation. Greenbelt, Maryland.
- 14. Hammond, B., et al., *Contralateral comparison of blue-filtering and non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery.* Clinical Ophthalmology, 2010: p. 1465.
- Sheedy, J.E., et al., *Is all Asthenopia the Same?* Optometry and Vision Science, 2003. 80(11): p. 732-739.

- 16. Stringham, J.M., K.J. O'Brien, and N.T. Stringham, *Macular carotenoid* supplementation improves disability glare performance and dynamics of photostress recovery. Eye and Vision, 2016. **3**(1).
- 17. Nahar, N.K., et al., *Objective Measurements of Lower-Level Visual Stress*. Optometry and Vision Science, 2007. **84**(7): p. 620-629.
- Gowrisankaran, S., J.E. Sheedy, and J.R. Hayes, *Eyelid Squint Response to* Asthenopia-Inducing Conditions. Optometry and Vision Science, 2007. 84(7): p. 611-619.
- 19. Health Information Portability and Accountability Act (HIPAA). In https://www.hhs.gov/hipaa/for-professionals/privacy/index.html (Ed.).

APPENDIX A: PATIENT REPORTED OUTCOMES (STUDY QUESTIONNAIRES)

PRO SPECIFICATIO Page 75 of 117 1 Final 2018-03-22 JJVC CON

11010101010100	Protocol	6100
----------------	-----------------	------

Johnson & Johnson Vision Care, Inc.

PRO SPECIFICATION Version 1 Final 2018-03-22 Page 76 of 117

JJVC CONFIDENTIAL

Protocol 6100	Johnson & Johnson Vision Care, Inc.	Confidential

APPENDIX B: PATIENT INSTRUCTION GUIDE

The Patient Instruction Guide will be provided separately.

APPENDIX C: PACKAGE INSERT (APPROVED PRODUCT)

• Acuvue OASYS Brand Contact Lenses

If valion is ac equitable, perform a sitt tamp examination to assess adequate fit (sentration and movement). If fit is acceptable, dispense the lenses instructing the patient to return its one seek for examplessment; these dispensing and follow-up information in PATIENT MANAGEMENT).

All patients should be supplied with a copy of the PATIENT INSTRUCTION QUIDE for these lenses. Copies are available for download at

TORIC FITTING GUIDELINES

A though most aspects of the fitting procedure are identical for all types of soft contact lenses, including torics, there are some additional steps and/or rules to follow to assure the propertil of toric lenses.

The only new steps you must follow in prescribing AGUAUE CASYS* for ASTIG-MATEM contact, lenses are that, you must determine the stability repeatability any drift angle of the lens axis so that you can prescribe the correct lens axis for your

A. How to Determine Lens Cylinder and Axis Orientation

 Locatethe Orientation Marice.
 To help distermine the proper orientation of the toric iera, you'll find two primary to use elements use proper of entration of the kork lens, you'll high the phraminals about 11mm form the lens edge as presenting the vertical position on opposite-ends of the lens at 8 and 12 o 'dook fig. 15. Because of he lens' abilitating spiken, where makes manements the vertical position – these is no 'loop' and' bottom' as in a partim-bai lated lens. You whin 1 need to view be hmarks to asses at intertablen; simply look for the 6 o'dook mark as you would with a prime-bail self lens.

() Il gure 1

✓ Traue 1 Vou I neda biomicroscope and a 1 mm or 2 mm para leipiped beam to highlight the market when the limit is fitted to the exp. These are a number of techniques you can use to improve the width of the 6 dockmark. Using a paraleleipied beam and medium magnification (Discer 154), slowly and down the limit, looking paraleleiwith of wheth (Umridion at the whole i lumitad area. Backlighting the mark this way should make it more visible. Some threas manip-ulating the lower if dimicip is consoure the mark.

2. Observe Lens Rotation and Stability

Observe the position and stability of the "boltom" mark. It usually stabilizes all the 6 of do deposition. Fit does, calculation of the lens power will be straightforward. The 6 of dock position is not a "must", however, the absolute regularment is that the axis position be stable and repeatable.

Allow the lenses to settle for about 20 minutes with the correct power le A low the investion statils for about 20 minutes with the correct power lenses in place. Was accessible more multi-have the patient low stay cost Assessible patient's reaction to distance at lean under these characteristics. Then have the patient's reaction is a bagaint or control to base should be now at both near and distance objects, observa to reactions. Only that these vision tests and on completed double the patient to about the to base should be near and distance objects, observa to reactions. Only that these vision tests and one provided double to patient to about the near the transformation reaction to argenize (i.e., i.g. power from cost) at first and then graduate to mapping and first particle to about the near the near advance of the near advance of the near the n

A lar the patient's performance under the above conditionals completed, is of visual acuty and reading ability under conditions of moderately dimitium

An initial undevorable response in the office, while indicative of a guarded prog-nosis, should not immediatelynule out a more extensive/trial under the usual conditions in which a patient functions.

4. Adaptation

4. Adaptation Visually demanding situations should be avoided during the initial wearing pe-riod A patient may at first, experiences some midiburned usion, dischass, has aches, and a faveling of slight initiations. You should sequial the salightational symptoms to the patient. These symptoms periods, its eporem the programs several weaks: The is orger threas symptoms periods, it is eporem the programs. for successful a daptation

To help in the adaptation process, the patient can be advised to fist use the lanses in a comfortable familiar environment such as in the home.

Some patients feel that automobile driving performance may not be op imal during the adaptation process. This is particularly true when driving at night. Before driving a moler vehicle, it musp be recommended that the patient be a passenger flat. To make sure that, the vision is addition by for operating an a tomobile. During the first several weeks of ware pithen adaptation to occurrin to occurring. It may be advisable for the patient to only drive during optimal driving cond-tions. A ter adaptation and success with these activities, the patient should in able to drive under other conditions with caution.

D. Other Suggestions The success of the monovision technique may be further improved by having the patient folow the suggestion s below:

· Have a third contact lens (distance power) to use when critical distance viewing

Have a third contact lens (near power) to use when critical near viewing is needed.

. Having supplemental specta cles to wear over the monovision contact lenses

The mark may stablible some what left or right (drit) of the vertical meridian and still enable you to ft a loric tens for that eye, as long as the tens always etums to the same "drift axis" position after setting. The deviation can be compensale d for in the final prescription. Your objective is to ensure that whatever position is ein it all ensures means ar 6 of clock, this position must be stab and repeatable. With full eve movement or heavy bink, you may see the n swing sway, but heymust return quickly to be ending at able position. If the lans does not return quickly you may need to select a different lans. Assessing Rotation

Assessing invites as clock dial and every hour represents a 00° intensi. If the orientation mark of the initial learnatabilizes somewhat left or right of the vertical position, the final learnat learnation are solved in the second solved in the use an adored/oute in the still area or uses an excited learn in a speciale that fame to measure or estimate the "Still range" of the confidence of the fame to resume or estimate the "Still range" of the confidence of the fame to resume or estimate the "Still range" of the confidence of the stars to resume or estimate the "Still range" of the confidence of the stars to resume or estimate the "Still range" of the confidence of the stars to resume the still range of the confidence of the stars to resume the stars that the stars that the stars to resume the stars that the stars that the stars the stars that the stars that the stars to resume the stars to resu To companisate for this "drift", measure or estimate the "drift", then add or subtract it from the refractive axis to determine the correct cylinder axis. Use the LARS Left Add. Right Subtract method to determine which direction to

B. How to Determine the Final Long Power

When the diagnostic lens has its axis signed in the same meridian as the patient's refractive axis, a sphero cylindrical ve revenation may be performed and visual aculty determined. However, in the case of crossed axes, such as and votual accury determined in otherwise, in the table or detailed accur, such as when the diagnostic lens accur is direct from the public in and accurs accil, is not advisable to over-entropy the difficulty in computing the resultant power. In fitting, contrad_interact, it is customary to prescribe the full public appliers, in the cylinder, however, any lens to balon is visually distribute to the appliers, in the cylinder, however, any lens to balon is visually distribute to the prescribe accurstic or contradictions are used as only the same possible. So, here is how to determine the final lens power For the Solute:

If sphere alone or combined sphere and cyindler Ro > 4.00 D, complemente for is tax distance. If sphere alone or combined sphere and cyindler Ro \leq 4.00 D, we fixe complexisation is not necessary. For the Cylinder: Adjust the axis by the drift angle using LARS. Ghoose a cylinder that is $\pm 0.25D$ from the refractive cylinder.

Case Examples: Example 1

C.S. -2.00 - 1.00 x 180 20/20 2hoose a diagnostic lens for each eye with an axis as close to 1.807 as ossible. Place the lens on each eye and alow a minimum of 3 minutes

for ap-cellic visual basics may improve the success of monovision correction. This is particularly applicable for those patients who cannot place state drivers licensing requirements with monovision correction.

 Make use of proper illumination when carrying out visual tasks. Monovision fitting success can be improved by the following suggestions: Reverse the distance and near eyes if a patient is having to uble adapting.
 Refine the lens spowers if there is trouble with adaptation. Accurate lens power is ortical for preabyopic patients.

. Emphasize the benefits of clear near vision and straight ahead and upward gaze with monovision.

he decision to fit apatient with a monovision correction is most appropriately left the Eye Gare Professional in conjunction with the patient after carefully consid-

All patients should be supplied with a copy of the PATENT INSTRUC-TION GUIDE for these lenses. Copies are available for download at www. vue com.

PATIENT MANAGEMENT

Disp-sesing Visi PROVIDE THE PATIENT WITH A GOPY OF THE PATIENT INSTRUCTION CUDE FOR THESE LENGES. NEWEN THESE INSTRUCTIONS WITH THE INTENTSO THAT HE OR SHE CLEARLY UNDERSTANDS THE PRESCRIBE WEARING AND REPLACEMENT SCHEDULE (DISPOSABLE OR FREQUENT

REPLACEMENT). Recommend an appropriate cleaning and disinfecting system and provid patient, with in structions regarding proper lens care. Ghemical or hydroge percode disinfection is recommended.

Schedule a follow-up examination.

Follow-up Examinations

Followup care researcary to ensure continued successful contact, lens wear) should include routine periods progress examinations, management of specific problems; if any and a review with the patient of the wars should, and englacement, she edide, and proper lens care and han ding procedures. Recommended Folow-up Examination Schedule (complications and specific problems should be man aged on an individual patient basis): One week from the initial lens dispensing to patient 2. One month plost-dispensing 3. Every three to six months thereafler

It to equilibrate, based on the patient's initial response to the lens. If the lens has not yet stabilized, re-check until stable. Gheck the orientation of the axis mark. If the bottom axis mark is in the 6 o'clock position on both eyes, choose the appropriate cyinder as lated previously. If the lens has not yet stabilized, reche ckuntilistable. Here is the PscPres

OD. -2.50 - 1.25 x 180 OS. -2.00 -0.75 x 180 Example 2 Man Hest, (spe cta cle) refraction: O.D. - 3.00 - 1.00 × 90 20/20 O.S. - 4.75 - 2.00 × 90 20/20

Use — In the source we are source of the so

The fitting indicates the following:

Right Eye: Companisate the 10° axis drift by adding it to the manifest refraction axis. Have in the By negocitated -3.00 -0.75 x 100 Left Eye The lens on the left eyeshows good centration, movement, and a consistent tendency for the mark to drift right by 107 from the 6 o'd ock position why alforced bink. Since the manifest refraction called for a power of -4.75D, a djust for the vertex distance and reduce the sphere by 0.25 D an prescribe the -1.75D cylinder. Compensate for the 10° axis drift by subtra-ing it from the manifest refraction. Here is the RxPrescribed: 0.8 -450-175 v 80

If vision is acceptable, pleform a silt tamp examination to assess adequate fit (certration and movement). If fit is acceptable, dispense the lenses in - structing the pair (to return in one weekfor reassessment), see dispending and follow up information in PATEINT MANAGEMENT).

All patients should be supplied with a copy of the PATIENT INSTRUCTION GUIDE for these lenses. Copies are available for download at

NOTE: More frequent or additional follow-up visite may be recommended for patients on an extended waar schedule.

 Preferably, at the follow-up valits, lenses should be worn for at least sich ours.
 If the lenses are being worn for on thu ous weat the examination should be performed as eaty as possible on the morning following overright wear. commen ded Pro cedures for Follow-Up Vist; 1. So icit and record patient's symptoms, if any,

We sause visual acuity monocularly and bin ocularly at, distance and near with the contact lenses.

Perform an over-refraction at distance and near to check for residual refractive error.

With the biomicroscope, judge the lensifiing chass deristics (as described in the CENERAL FITTING GUDELINES) and evaluate the lensing surface for deposite and damage.

 Following lens removal, examine the comes and conjunctios with the biomi-or scope and fluorescein (unless: contraindicated). The presence of vertical corneal strise in the posterior central cornea and/ or corneal neo-subcularization is in dicative of excessive corneal edema. The presence of corneal staining and/or imbai-conjunctival hyperemia can be indicative of an unclean term, a reaction to solution presentatives

velen swear, and/or a poorly fitting lens. Papillary conjunctival changes may be indicative of a nunclean and/or

 Periodically perform kerato metry and spectacle refractions. The values should be recorded and compared to the baseline measurements. If any observations are abnormal, use professional judgment to a leviate the problem and restore the eye to epitmal conditions. If the orbital for success to if its and not attained during any follow-up examinations, repeat the patient's trial fitting procedure and refit the patient.

WEARING SCHEDULE

The wearing and replacement schedules should be determined by the Eye Gare Professional. Regular checkups, as determined by the Eye Gare Professional, ar For Daily Weat: ver usage vesse: "and ends to even wear the len ses in it aly. The Eye Care Profession at should mech asias the importance of adhering to the hital maximum wearing schedula, absommer wearing time should be determined by the Eye Care Professional base on the epademic hypothological eye constition, because in dividual segremes to Patients tend to overwe emphasize the important Maximum wearing firme

DAY HOURS 8-10 10-12 5 and after a liveking hours For Extended Wear t is recommended that the contact lens wearer first be evaluated on a daily wear

MULTIFOCAL FITTING GUIDELINES

These lenses are not recommended for patients who have -1 00D or greater

Eye dominiance (the metho de described in MCNOVISION FITTING QUID E-LINES may be used)

Spherical equivalent distance prescription (vertex corrected if n rounded to less minus if between powers)

For each eye select the trial len's distance power that is closest to the patient's distance spherical equivalent.

of refractive cylinder as this level of uncorrected cylinder may lead to add visual compromise.

These lenses are a valiable in the following ADD powers:

+ Lens "LOW" = "low" ne ar ADD ien s (Max +1.25 ADD)

Lens "MD" = "medium" near ADD lens (Max +1.75 ADD)

Lens "HGH" = "high" near ADD lens (Max+2.50 ADD)

B. Fitting Instructions

* New ADD

1. Determine the following:

2. Select the initial trial lens as follows:

The maximum su gassted wearing time for these lenses is:

. Presty opic Needs Assessment & Patient Education

schedule. If successful, then a gradual introduc ion of extended wear can be followed as determined by the prescribing Eye Gare Professional. These lenses have been approved for extended wear up to 6 nights/7 days of continuous wear. Not all patients can achieve the maximum wear time. For Therap-suttic len swear, close supervision by the Eye Care Profession alls necessary. These lenses can be evern for extended lever for up to 6 nights/7 of continuous wear. The Eye Care Professional should determine the appropri wearing time and provide specific instructions to the platient regarding lenis care, neertion, and emoval.

REPLACEMENT \$CHEDULE

ribs difor Frequent Replacem er When prescribed for daily ware ("equent regulatorment), it is recommended lenses to discarded and replaced with a new lens every 2 weeks. Howe Care Professional is encouraged to determine an appropriate replacement base dupon the response of the patient. nded that the

For Lansa Pres cribed for Disposable Wear: When prescribed for disposable wear, the replacement schedule should be determined by the Eye Gase Professional based upon the patients history and their ocular examination, as we las the practition ets experience and cinical judgment.

Once removed, it is recommended that the lans remain out of the eye for a period of rest of overnight or longer and be discarded in accordance with the prescribed. wearing schedule. The Eye Care Professional should examine the patient during the early stages of extended areas.

Page 80 of 117

Nut take all contact lenses may produce compromise to vision under certain olic unstances and the patient should understand that they might not that they vision acceptable in specific subtano (a, reading a menu in a dome statu and dhring at night in manyloggy conditions ado). Therefore, caution should be associated when the patient its wearing the correction for the first time under the set of the s exacts at when use patients is weating use corrections or rule instrume units they are familiar with the vision provided in visual by datalenging environments. Cocapations and environmental visual demands should be considered. If the patient requires ortical visual accurate provided in the patient of the patient requires ortical visual accurate provided in the patient of the first when her his patient can function adequately with the ACULAE CARGET from PREESIDERA considering and the mark may cole explain a for advise such as: visually demanding situations auch as operating potentially dan gerous machinery or performing other potentially hazardious activities; and

state driver's loarnes teg, driving at night). Patients who cannot pass their state driver's loarnes requirements with these lenses should be addiend to not drive with this correction, CR may require that additional over-correction be prescribed. 2. driving sutomobiles (e.g., driving at night). Patients who cannot pass their dispensing and follow-up information in PATIENT MANAGEMENTI.

ADD rower Unanceptable Distance Vision: Determine the amount of additional minus, or less plus, over one or both eyes

Latermine the amount of additional minus, or easipplat, over one or both that is associated while checking its while checking its field of a distance and mean vision. If vision is all not acceptable, change the dominant eye to the mean lower. A hypower, if the patient is wearing two low ADD tenses, change the dominant eye to a sphere lens with a power equal to the spherical equilatent distance

prescription. Unace optibile Distances and Hear Vision: Determine the amount of additional plus and/or minute over one or both eyes that it is social table which eyes the which can distance and near vision. If additional plus and/or minute in not required, charge the kern power in the dom-tional eyes to the near kilowat ADD power. If app isable.

Al patients should be supplied with a copy of the PATIENT INSTRUCTION GUDE for these lenses. Copies are available for download at

LENS CARE DIRECTIONS

Nhen lenses are dispersived, the Eye Care Professional should provide the patient, with appropriate and a depate warming and instructions in accordance with the modular patients here type and warming coheckline. The Spc Care Professional in ould recommend an appropriate care system tailowd to the patient's individual

For complete information concerning contact lens han ding, care, cleaning, disin-fecting and storage, with to the Patient, instruction Guide for these lenses. Copie as available for download at www.scouve.com. For Lens es Prescribed for Frequent Replacement Wear

The Eye Care Professional should eview with he patient, lens care directors / clearing, disinfecting and storing, including both basic lens care information an ap-cific instructions on the lens care regimen recommended for the patient.

for Lens es Prescribed for Disposable Wear: The Eye Gare Professional should review with patients that no cleaning or disinfec-Son is needed with disposable lenses. Patients should always dispose of lense when they are removed and have replacement lenses or spectacles are lable. Lenses should only be cleaned, rinsed and disinfected on an emergency basis ahen replacement lenses or spectacles are not available

Care for a Dried Out (Dehydrated) Lens If the frequent, replacement, lens is of the eye and exp coed to air from 30 minutes to 1 hour or more, its surface will become day and gradually become non-weiting, if this should o coup, discard the lens and uses new one.

Gare for Sticking (Non-Moving) Lenses

Uses or accounting two-mexing Lanses have drops of the recommended lubricating or review it my solution directly to be a solution of the recommended lubricating or review it my solution directly to be a solution of the large contracts after a few minutes, the patient moving is from-movement of the large contracts after a few minutes, the patient should immediately contact the type Care Mericanian.

EMERGENCIES

gardening solutions, laboratory chemicals, etc.) are splash ed into the eyes, the pa sent should: FLUSH EVES INVECTATELY WITH TAP WATER AND INVECTATELY CONTACT THE EVE CARE PROFESSIONAL OR VISIT A HOSPITAL ENERGENCY ROOM WITHOUT THE LAW.

 Select, the near power of the lense based on the patient's ADD range as follower: ADD: +0.75 to +1.25 use a "LON" near ADD lens on each eye A. Patient Selection Monovision Needs Assessment

MONOVISION FITTING GUIDELINES

wan overaisen ne eas was amen for a good programit, the publient shoul of have a dequately come die distance and near visual acuty in each eye. The amb typpic parter or the parter with significant axigmater (greater than 1.0000) in nie eye may not be a good amdidute for monoulsion comection with these lenses.

Coupational and environmental visual demands should be considered. If the patient requires onlicativision (situal south) and stereophic), it should be deter-mined by trial whether this patient, can fun of on adequately with monoul sion once ton. Monovision contact is na sever may not be optimal for advities such

visually demanding situations such as operating potentially dangerous machine ty or performing other potentially hazardous activities; and

driving subsmobiles (e.g., driving at nigh). Patients who cannot pass their state driver's loanes requirements with mon-oxision correction should be advised to not drive with this correction, CR may require that additional over-correction be prescribed.

doed controllation segmentations. A planet fast particle and a planet fast planet fa

with the vaceon provided in vacually on allenging environments (e.g., was dreg an ensue in a dimensionant, driving at night in anying/bagy on onditions, etc.). During the fitting process, it is no eassary for the patient to realize the diad variands eas any with a latthe advantages of older mere vision and straight ahe ad upwardig aze that monovision contact lenses provide.

Generally, the non-dominant eye is corrected for near vision. The following two methods for eye dominance can be used.

Nethod 1: Determine which eye is the "sighting eye." Have the patient, point to an object at the far end of the room. Gover one eye. If the patient is still pointing directly at the object, the eye being used is the dominant (pighting) eye.

HOW SUPPLIED

Each start elens is supplied in a fol-seal ed plastic package containing bulfered same solution with methyl ether celulose. The plastic package is marked with the

· ACUVUE OA SYS*: base curve, power, diameter, iot number, and expl

· ACLIVUE OA SYS* for A STIGMATISM: base curve, power, diameter,

ACLIVUE OA SYS* for PRESBYOPIA: base curve, power, diameter ADD.

REPORTING OF ADVERSE REACTIONS

All serious adverse experiences and adverse is actions observed in platients wea

Johnson & Johnson Vision Gare, Inc.

7500 Genturion Parkwa y Jackson vi le, R. 32256 USA

Tel: 1-800-843-2 020

In Canada: Johnson & Johnson Vision Care, division of Johnson & Johnson,

AGUVUE CASP'S* and HYDRACLEAR* are trademarks of Johnson & John son Vision Care Companies.

E-bhrann & Johnson Vision Care Commanies 2015

In LISA: Johnson & Johnson Vision Care, In

Bie

Bavision number AC\06-15-0

JJVC CONFIDENTIAL

ing these lenses or experienced with the lenses should be reported to

ads, lot number, and expiration diate

and expiration date

1. Ocular Preference Determination Methods

B. Bye Selection

Method 2: Determin ewhich eye wil accept the added power with he least reduction in vision. Place a hand-held thil lear equit to he specialize near XDDI held not of new year and them held her with the datance window entroported in its inplace for both eyes. Determine weighter the padent (Indonto best with theme ar ADD lears over the right of the eye.

Other methods include the refractive error method and the visual demands

Refract live Error Method For anisometropic correction, it is generally best to fit the more hyperopic (ess myopic) eye for distance and the more myopic (less hyperopic) eye for near.

3. Visual Demandis Method Gonsider the patient's occupation during the eye selection process to deter-

mine the officativision requirements. If a patient's gaze for near tasks is usually n one direction, connect the eye on that side for near.

Unitational Lens Connection There are circurstances where only one contact lensis required. As an example, an enveloping pattern workd only require a near lens while a bilateral mycope may only require a datance lens.

Ecample: A presidvopic emmetropic platient who requires a +1 75D ADD would

have a +1.75 Dians on the max-eye and the other eye lief without a lens. A prestyppic patient registing a +1.50D ADD who is -2.50D myspic in the right eye and -1.50D myspic in the left eye may have the right eye corrected for diatance and the left uncorrected for near.

2. Near ADD Determ Instein Away prescribe the lens power for the near eyesthat provides optimal near acady at the mixed or of the patient's habitual reading distance. However, when more there power power bottom optimal reading performance, prescribe the least plan (mixed) of the power.

Case history and standard dinical evaluation provide should be used to determine the prognosis. Determine the distance correction and the near correction. Next, determine the near ADD. With trial lenses of the proper power in place, observe the reaction to this move do is correction.

IMPORTANT: Please read e-prefully and keep this

formation for future use.

This Package Insert and Fitting Gu de is intended for the Eye

Care Professional, but should be made available to patients

upon request.

The Fire Care Professional should provide the patient with

the appropriate instructions that pertain to the patient's

prescribed lenses. Copies are available for download at

www.acuvue.com.

ACUVUF

BRAND CONTACT LENSES

ACUVUE OASYS* Brand Contact Lenses

ACUVUE QASYS* Brand Contact Lenses for ASTIGMATISM

ACUVUE QASYS* Brand Contact Lenses for PRESBYOPIA

nofilcon A Soft (hydrophilic) Contact Lenses Visibility Tinted with UV Blocker for Daily and Extended Wear

CAUTION: U.S. Federal law restricts this device to sale by or on the order of a licensed practitioner.

4ASYS

ction. Lenses are fit a coording to the GENERAL FITTING

3. Thial Lone Fitting A trial fiting is performed in the office to allow the patient to

GLIDELINES for base curve selection in this Package Insert.

Example: A secretary who places copy to the left side of the desk will function beat with the near lens on the left eye.

C. Special Fitting Characteristics

ADD: +1.50 to +1 75 use a "MID" near ADD lens on each eye ADD: +2.00 to +2.50 use a "HOH" near ADD lens on each eve 3 Allow the lans to settle for a minimum 10 minutes.

4 Assess distance and near vision binecularly and monocularly.

 Demonstrate the vision under various lighting conditions (normal and de-oreased illumination) and at distance, intermediate and near. Make adjustments in power as necessary (see Mutifical Toubleshooting below). The use of han d-held trial lenses is secommended.

If distance and nearvision are acceptable, perform a sit tamp examination to access ad-equate ft (sentration and movement). If ft is acceptable, dap ense the lenses instructing the patient to return in one week for reassessment (per

Mult focal Troubles hooting

Unacceptable Near Vision Determine the amount of additional plus, or less minus, over one or both eyes that is acceptable, while checking the effect on distance and near vision. If vision is all not acceptable, chan ge then on-dominant eye to then ext highest, ADD preser

SYMBOLS KEY

The following symbols may appear on the label or carton: SYMBOL DEFINITION ConsultInstructions for Use Manufactured by or in Date of Manufactured Live ByDate (expiration date) LOT Batch Code TILL Sterle Using Steam or Dry Heat BIA Diameter BC Base Curve B Diopter (ens power) CYL Cyinder AXES Axis MAX ADD Near ADD LOW "Low" Near ADD MB "Medium" Near ADD HOH "High" Neur ADD ملاق المعالم ال معالم المعالم ال Pree Paid for Waste Management GAUTION: U.S. Federal law restricts this device to sale by or on the order of a licensed practitioner 9 Lens Crientation Correct Lens Crientation Incorrect (Lens Inside Out)

ping-Off is the addition of fresh solution to solution that has been sitting Disc and Date on Multi-Purpose Solution Bottle

Instructions for Use

Discard any remaining solution after the recommended time period indic on the bottle of multi-purpose solution used for disinfecting and soaking - The Discal Daterefers to the time that the patient can safely use contact, lans care product after the bottle has been opened. It is not the same as the expiration date, which is the last date that the product is still effective before

WARN NO: Using multi-purpose solution beyond the discard date could result in contami-nation of the solution and can lead to severe infection, vision loss, or blindness avoid contamination, DONOT louch tip of container to any surface. episoe cap after usin g.

To avoid contaminating the solution, DO NOT transfer to other bo ties or

containers. Rub and Rinse Tim Instructions for Line

is selected with a large the relief should us and rive the la ac oo ding to the recomment the multi-pulp ose solution. liens rubbing and rinsing times in the

- WAIIN NO-
- Rub and rinse lenses for the ecommended amount of time to help prevent
- Never use wate; same solution, or reveating di ops to disinfect the lenses.
 Never use wate; same solution, or reveating di ops to disinfect the lenses.
 Not using the ecommended disinfectant can lead to severe infection, vision loss, or blindhess.
- · Lone Gase Gare Instructions for Line

Empty and clean contact lens cases with digital rubbing using fresh, sterile disinfeiding solutions/contact lens cleaner. Never use water. Cleaning should dame ong souton roomas, wit okawer rever us kake. Cearing in be folowed by inning with heat, saint a districting soutons (newer use wate), and wping the term cases with heat, clean tissue is recommended Newer air dry or receip the term case lost after use without any additional cleaning methods. If all drying, be sure that, no residual solution remains the more there exists within a sure that, no residual solution remains the more there exists in a sure that, no residual solution remains the more there exists in a sure that, no residual solution remains the more there exists in a sure that no residual solution remains the more there exists in a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more there exists a sure that no residual solution remains the more exists a sure that the more exists a sure that no residual solution remains the more exists a sure that no residual solution remains the more exists a sure that the more exists a sure that no residual solution remains the more exists a sure that no residual solution remains the more exists a sure that the more exists a sure that no residual solution remains the more exists a sure that no remains a sure that no residual solution remains the more exists a sure that no remains the more exists a cleaning methods. If air drying, be sure that no nesidual solution remains in the case before adowing it to air dry. Reglace the term case according to the directions provide diby the Eye Gaie P ofessional or the manufacturer's labeling that accompanies the case.

CR-6100, v 2.0

DESCRIPTION

AGUAUE QASYS* Brand Contact Lenses, the AGUAUE QASYS* Brand Con Lenses for AST GMAT SM, and the AGUAUE QASYS* Brand Contact Lenses ror PTREBYCPHA are soft (hydrophilo) contact times available as sphere i can do ortact. Lenses or multiplicational inness and inbud de IMDEVALDENF IR LLB Technology. The Ienses are made of a sphere hydrogen multiplication containing an internal writing agent with visibility timed UV absorbing monome. These lanses a stinted bias using Resolve Blue Dys #4 to make the lanses mole visible for han ding. A benzotriazoleUV absorbing monomeris used to block UV

The transmittance characteristics are less than 1% in the UAB range of 280 nm to 315 nm and less than 10% in the UAA range of 316 nm to 380 nm for the entre powerrange. Lona Properties

Specific Gravity (calculated): 0.98 - 1.12 Refactive Index: 1.42 Light Transmitance 85% minimun Surface Character. Hydrophilic

 Water Content: Oxygen Permeability; METHOD VALUE 103 x 10[™] (mi/sed) (mi0./mixmmHg) @ 35°G Fattip ounds y corrected, edge corrected) Fatt (p ound a y corrected, no n-edge corrected) 122 x 10[™] (m²/sed) (mi0 /mixmm Hg) @ 35°G

Lons Parameters: Diameter Range: 12.0 mm to 15.0 mm

Genter Thickness:

Axis Range:

BaseGu ve Range:

Spherical Power Range

7.85 mm to 10 00 mm Powersc Daily Wear: -20.00D to +20.00D ADD Powers: Extended Wear: -20.000 k +14.000

Gontact lens cases can be also u on of bacterial growth

 Multilo cal ADD Power Range: +0.25D to +4.00D GyinderPowerRange:

WARNING: Do not sto el enses orrinse len s cases with water or any non-steril e solution. Only finain multi-purpose solution should be used to prevent contamination o the lenses or lens case. Use of non-sterile solution can lead to serve infectio vision loss, or bindness.

varies with power

-0.25D to -10.00D

2.5" to 180"

PRECAUTIONS

Special Precautions for Eve Care Professionatic Due to the small number of patients enrolled in clinical investigation of lens es, all refaceive powers, de sign configurations, or lens pa armeters availabl in the lens material are not wail usted in significant numbers. Consequently

In the even materia are not evaluated in agrimmant, numeric, to charagenes, when selecting an appropriate lend design and pass mellers, the Ege Care Profe alonal should consider all characte listics of the lens that can affect easy performance and o cutar health, including oxygen permeability wettail by central and periphenal thiodeness, and optic zone diameter. The potential impact of these factors on the patient's outer Hammer. The potential impact of these factors on the patient's outer Health Hould be carefully weighed against the pais institutes of or what the one control the set of a set or continuing outer health of the patient, and is rap performance on the system did be carefully monitored by the pe scribing Eye Gare Productional

Patients who was these lanses to correct p eabyopia using monovision may not achieve the best corrected vice also utily for either far or near vision. Visual equivenests vary with his individual and in visit be considered when selecting the most appropriate type of lens for each patient.

- Flu prespein, a velow dw., should not be used while the lenses are on
- the eyes. The lenses absorb this dye and become discolored. Whenever florencein is used in eyes, the eyes should be flushed with a sterie saline solution that is recommended for in-eye use.
- Eye Gare Profession als should instruct the patient to remove lenses immedi ately if the eyes become red or imitated. onals should carefully instruct patients about the follow-

Eve Care Professi are regimen and safety precaution

- ding Precautions: Before leaving the Eve Care P ofession als office, the patient should be able to promp by remove the lenses or should have someone else available who can remove the lenses for him or her.
- DO NOT use if the sterile bister package is opened or damage d
- Always wash and rinse hands befow handling lenses. Do not get cost lotions, scaps, c earns, deodorants, or sprays in the eyes or on the le

- The AGU/UE QASYS* Brand Contact Lenses are hemispherical shells of the following dimensions: Diameter: 14.0 mm
- Center Thickness: Minus Lens varies with power (e.g. -4.00D: 0.070 mm) Plus Lens varies with power (e.g. +4.00D: 0.168 mm) BasaCurve 8.4 mm 8.8 mm -0.50D to -6 00D (n 0.25D Powers: -6.500 to -12.0000 (in 0.500 +0.500 to +6.0000 in 0.250

AVAILABLE LENS PAPAMETERS

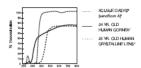
+6.50D to +8.00D in 0.50D incremental The ACL/VLE CASYS* Brand Contact Lenses for AST GMATISM arehemilo/c shels of the following dimensions: 14.5 mm

Canter Thicknesser Minuted and , varies with power is a .-4.00D 0.000 mml Plus Lens - varies with power (e.g. +4.00D: 0.172 mm BaseCurve 8.6 mm

Powersc plano to -6.000 (in 0.250 increments) -6.500 lo -9.000 (in 0.500 increments +0.25D to +6.00D in 0.25D increments Qvinder: -0.75D. -1.25D. -1.75D. -2.25D. -2.75D Axis: 10' to 180' (in 10' in crements) The ACUVUE CASYS* Bon d Contact Lenses for PRESBYCPIA are he

hals of the following dimension Diameter: 14.3 mm Center Thickness: MnusLens - varies with power (s.g. -4.00D: 0.070 mm) Plus Lens - wries with power (e.g. +4.00D; 0, 168 mm) BaseCurve 8.4 mm -9.00D to +6.00D (in 0.25D in comenta) +1.25 LOM: +1.75 (MD), +2.50 HGH

is beat, to put on lenses befoe putting on makeup. Waterbased cosmetics are less likely to damage lenses than ol-based products.


DC NOT touch contact lenses with the fingers or hands if the hands are not free of foreign materials, as microscopic scratches of the lenses may occur, causing distorted vision and/or injury to the eye.

- Ganefully follow the handling, insertion, removal, and wearing instructions the Patient Instruction Guide for these lenses and those prescribed by the Sex Gale Professional. Aways han de lenses carefully and avoid diopping them.
- Never use tweezers or other tools to service larges from the large ontginer unless specifically in dicated for that, use. Side the lens up the side of the sowiuntilit is free of the container. Do not touch the lens with fingemails.

Giose supervision is necessary for the Therapeutic use of these lenses. Doubre medications used during 1 eathered with a bandage lens should be does immotived by the Sty Scale. Bir O elassion at lance or each on out an on- does immotived by the Sty Scale. Bir O elassion at lance the sense. In these cases, publication should be intructed in to the number the lenses. In these cases, publication should be intructed in to the number the lenses. In these does not a should be intructed in to the number the lenses. In these cases, publication should be intructed in to the number the lenses.

Wearing Processions:

- If the lens sticks bitops moving) on the eve. follow the recommended directions in "Gare for Stoking (Non-Noving) Lenses". The lens should move feely on the eye for the continue direath of the eye. If non-movement, of the lens continues, the patient should be instructed to immediately consult his char Fie Core Profe
- Never wear lenses beyond the period recommended by the Eye Game The patient, should be a dvised to never allow anyone else to wear their enses. They have been prescribed to fit their eyes and to correct their vision o the degleenecessary. Shaing lenses gleatly increases the chance of eye
- If servicel products, such as hair spray, are used while wearing lenses, exercise caution and keep eyes closed until the spray has settled.
- Avoid all harmful or initiating vapo is and furnes while we aling lenses
 - Different solutions cannot, always be used to gether and not all solutions are safe for use with all lenses. Use only recommended solutions.
- Never use solutions recommended for conventional hard contact lense
 - · Chemical dain fection solutions should not be used with heat unless

TRANSMITTANCE CURVE

WARNING: UV absorbing contaction season NOT substitutes for prot tive UV absorbing eyewear, such as UV absorbing goggles or sunglas because they do not completely cover the eye and surrounding area. rea Thpatient should continue to use UV also orbing evenue as directed.

ACTIONS In its hydrated state, the contact lens, when placed on the cornes, a da as a refracting medium to focus light rays on the retina. When hydrated and placed or the corn as for therapeuticuse, the contact lens acts as a ban dage to protect the

The transmittance chia acteristics are less than 1 % in the UVB range of 280 nm to 315 nm and less than 10% in the UVA range of 316 nm to 380 nm for the entire

o owner name e NOTE: Long-term exposure to UV radiation is one of the risk factor UTE: Long-berm deposues to UY radiadon is one o the eith tectors sociated with teatmasts. Exposues in based on a number of tactors uch as environmental conditions (altitude, goography cloud cow eigand eronal factors externi and nations of outfoors ar bitistien, UY filesching ontact lenses help provide protection against harmful UV radiation.

cifically indicate d on product labeling for use in both heat and chemical Always use fresh, unexpied lens care solutions and lenses

- · Do not change solution without consulting with your Eye Gare Professional Always follow directions in the package inserts for the use of contact lens
- Use only a chemical (not heat) lens care system. Use of a heat (the mail) care
- system can damage these lenses Stell e un preserved solutions, when used, should be discarded after the time specified in the disctors.
- Do not use salius or anything other than the recommended solutions for lubit cating or welting lenses.

Aways leap the instance of the second second

Topicato Discuss with Patients: Always contact the Eve Care Professional before using any medicine in the

- eyes. Octain medications, such as an thisterin es, decongestanta, duratica, muscle existanta, item quiteres, un di nose for motion sichness may cause dyness of the systemased insurancess, archite di disc. Bould such con ditors exist, properenedal imasures should be parabled. Deen di go n the seek pill thou old hould in the such of laharding deep that are indicated brune with and norticate lenses or the largerary discontinuance of ontable. In see antifes and medication is being used.
- Oral contraceptive users could develop visual changes or changes in lens tolerance when using contact lenses. Patents should be caution socondingly.
- As with any contact, lens, follow-up visits are necessary to assure the con-tinuing heal hof the patient's eyes. The patient should be instructed as to a recommended follow-up schedule.
- Who should Know That the Patient is Wearing Contact Lenses? · Patients should inform all dioctors (Health Gare Professionais) about being

Patients should always into mitheir employer of being a contact lenswearer. Some jobs may require use of eye protection equipment or may require that the patient of waar contact lenses.

Page 81 of 117

However, clinical studies have not been done to demonstrate that wear UV-Blocking contact lenses reduces the risk of developing cataracts or ther eve disorders. The Bre Care Professional should be consulted for

su gical conditions

or evalida

· feyes become red or in lated

Eye Disc om fort,
 Exc essive Tearing.

To substantial stability and protection in pig gyback lensifiting where the con-near and associated surfaces are too inequare to a low for on onal light gas permasite light[Thintees to be it, it addition, threase of the lens can prevent infation and abrasion is conditions where the same elevation differences in the heat gap hundhon rease tissue.

prescribed for therapeutic use may be worn for dialy or extended wearing

CONTRAINDICATIONS (REASONS NOT TO USE)

· Acule or subsoute inflammation or infection of the anterior chamber of the

Severe insufficien cy of lacrimal secretion (dry eye)

Comes (hon cestihasis)" editored comes) sensibility

Any eye disease, in jury or abnormality that affects the cornea, conjunctiva

Any systemic disease that may affect the eye or be exaggerated by wearing contact lenses

Allergic eactions of ocular surfaces or admecathat may be in duced or exag-gerated by wearing contactien ses or use of contactiens solutions

genzeed by wearing contract where of use of contract, entry solutions Coultain Instant on due to allegic machines which may be caused by use of contract, lens solutions (a., cleaning and disinfacting solutions, newelting drops, etc.) This contrain diverticals or preservative sputh as our yor Thimerosal, etc.) to which some people may develop an allengic response.

WARNINGS

EYE PROBLEMS, INCLUDING CORNEAL ULC BIS, CAN DEVELOP R AP DLY AND LEAD TO LOSS OF VISION; IF THE PATENT EXPERIENCES:

GENERAL FITTING GUIDELINES

A. Patient Selection: Patients selected to waar these lenses should be chosen based on:

• Motivation to wear lenses • Ability to follow in structions: e garding lens wear care

• General neath • Ability to adequately handle and care for the lenses • Ability to understand the risk and benefits of lens wea

Patients who do not meet the above criteria should not be provided with

Pailetta who do not metit the above ofter tabous not cop oncours was contact inner. 8. Pre-fitting Examination: Initial watalation of the pailett shadd begin with attornugh case history to determine if there are any containdeation to contact there was During the case history, the pailett in value are well as an assessment of their overall cost as physical, and mental health

Preceding the initial selection of trial contact, lanses, a comprehensive ocular evaluation should be performed that, includes, but is not limited to, the mea-

surement of distance and near visual acuity, distance and near refractive pre-scription (including determining the preferred reading distance for presbyopes)

Based on this evaluation, if it is determined that the patient is eligible to wear these tenses, the Eye Care Professional should proceed to the appropriate tens fit as not used as united with the tens

Remember to compensate for vertex distance if the refraction is g eater than #4.000.

D. Base o Curve Selection (this) Lons F (ting) The following it alleress should be selected for patients was discalled in try readings. However, correct curvature measurements should be performed to establish the patient's baseline occuter status:

The trial lenses should be placed on each of the patient's eyes and evaluated after the patient has adjusted to the lenses.

ACUVUE OASYS* for ASTIGMATISM: 8.6mm/146 mm ACUVUE OASYS* for PRESBYOP A: 8.4mm/143 mm

· ACUVUE DASYS*: 84 mm/14.0 mm

Any active comeal infection (place tail, fungal, protozoal or viral)

• Vision Changer

· Eye Redi

Loss of Vision,

· Or Other BrePro

Water Activity

NURNING:

Instructions for Use

habuctions for Us a

WARNING:

Use only feah multi-purp o

lenses are sosked (stored)

THE PATIENT SHOULD BE INSTRUCTED TO IMMEDIATELY REM LENSES AND PROMPTLY CONTACT THE EYE CARE PROFESSIO

When prescribed for daily weap patients should be instructed not to wear lenses while steeping. Glinical studies have shown that the risk of as loss situates and for a loss.

or or nerve when the index of the set of the

Studies have shown that contact lens wearers who are smoke shave a higher incidence of adverse eactions than norsmokers.

Problems with contact lenses or lens care products could result in setous injury to the eye. Patients should be cautioned that proper use and care of contact.

enses and lens careproducts, in cluding lens cases, are essential for the safe see of these products.

directions for lens care, in cluding cleaning the reduced by carefully following directions for lens care, in cluding cleaning the lens case.

Specific Instructions for Us eand Warnings:

during any activity in volvin gwater

· Soaking and Storing YourLenger

Do not explose contract lenses to water while wearing them

care, in cluding cleaning the rece cases. slides, September 21, 1989; 311 (51, pp. 775-783)

Water can harbor microorganisms that can lead to severe infection, vid on loss or bindheas. I "kensen have been submaneed in water when participating in water separtor a watering in pools, hu blue, bieve or oscense in the partient through be instructed to descard them and reglace them with a new pair. The Sign Case Protessional should be occurred of the occurrenceddators agending water gains and a generating and the second se

THE REFLECT THE SECOND SECOND

1. Gilaria of aPromatyFilana Appendy ft lens will omer and compilely cover the cornea [.e., no imbal acc possing, have sufficient movement to provide lear acchange under the contact, lens with the birls, and seconds bale. The lens should move freely when manipulated adjuty with he leaves is, and then roturn to tap opening contrared.

2. Criteria of a Flat Film a Lence Affait filing lens may eah bit, one or more of the following chass dia folicit: discontration, hor ompile a ormal a overage (i.e., limbal suppose of a second with movement with the bitm and/or edge standoff if the iers in judge d to be filt; filting, it should not be diagone as d to be paider.

3. Criteria of a Bleep Filling Lens. A steep filling lens may adult to a or more of the following characteristics: insufficient movement with the blink, conjunctival indentiation, and resistance when pushing the lensaup digitally with the lower life if the lens is judged to be e-

If the initial trial base curve is judged to be flat or steep fitting, the alternate base curve, if available, should be trial fit and evaluated after the patient has adjusted

to the lans, the lans should nove heavy when manipulated igitally with lower is, and then return to any openy outcared position when is leased. If resistance is encountared when pushing the lens up, the lens is fit fing tightly and should not be dispensed to the pallent.

-2 000

-0.250

-2.000

+0.25D

-2 25D

transition of the second se

steep fitting, it should not be dispensed to the patient.

power unless there is excessive residual astigmatism.

E. Final Lons Power (Spherical)

Example 1

Diagnostic lens

Final lens power

Diagnostic la ra:

Spherical over-refts of

Example 2

JJVC CONFIDENTIAL

Spherical over-refra-

ntactiens disinfecting) solution each time the

DIATELY REMOVE THE

INDICATIONS (USES)

The ACUALE CASPS* Brand Contact, Lennis Indicated for the optical correction of reflactive ametropia impropia and hope optial in phasics or a phasics per some with non-diseased eques who have 1 to Do or less of additionation. The ACUALE CASPS* Brand Contact, Lenn for ASTOM/IRSM is indicated for the

When prescribing contact lens wear for REFRACTIVE AW USE these lenses when any of the following conditions ex-The ACUARE DRATE than 6 densities 1 were related and the MI transmission of the model of the original or which of the states and in particles and the model of the model and any test of the states and may have 1000 Core is not an algorithm. The ACUARE DRATE than 6 densities and the model of the model and the model of the ACUARE DRATE that the state and the model of t

Unradiation to the comea and into the eye. Eye Care P ofessionals may prescribe the larges either for single-use dapos-side ware or equiviblained relationeriet ware with dearing, distribution and activation replacement year. The large may be cleaned and distribution activation of the size of the large may be cleaned and distribution Neguer Vplanned replacement wear, the le using a chemical disinfection system only.

sang a vienna vertifican system organization of the second s

These lenses are also indicated for therapeutic use as a banda gelens for the followng acute an dich o nic ocular conditions

- For THERAPEL/TIG USE, the Eye Gare Professional may prescribe these lenses to aid in the heating process of certain ocutar conditions, which may include those cited above. addramations of our owned of the second seco Patients should be advised of the following warnings pertaining to contact ions wear:
- r comeal pain relief in conditions such as bullous iveratopathy, epithelial sion and abrasion, flamenta y iveratitis, and post-le taloplasty. eroson ans azrator, namena y reactor, ans pose reaso passo. For usa as a beir ed uing the hailing po coase of publicial de decis such as denoice pi helial defects, conset lides, neurohophic and neuroparah/t ineratita, and che erical terms. For post surgical constitutions eshes bandage terms as indicated such as post infractore usages, jamellage ads. correct allips, and additional coular post infractore usages, jamellage ads. correct allips, and additional coular post infractore usages, jamellage ads. correct allips, and additional coular

ADVERSE REACTIONS

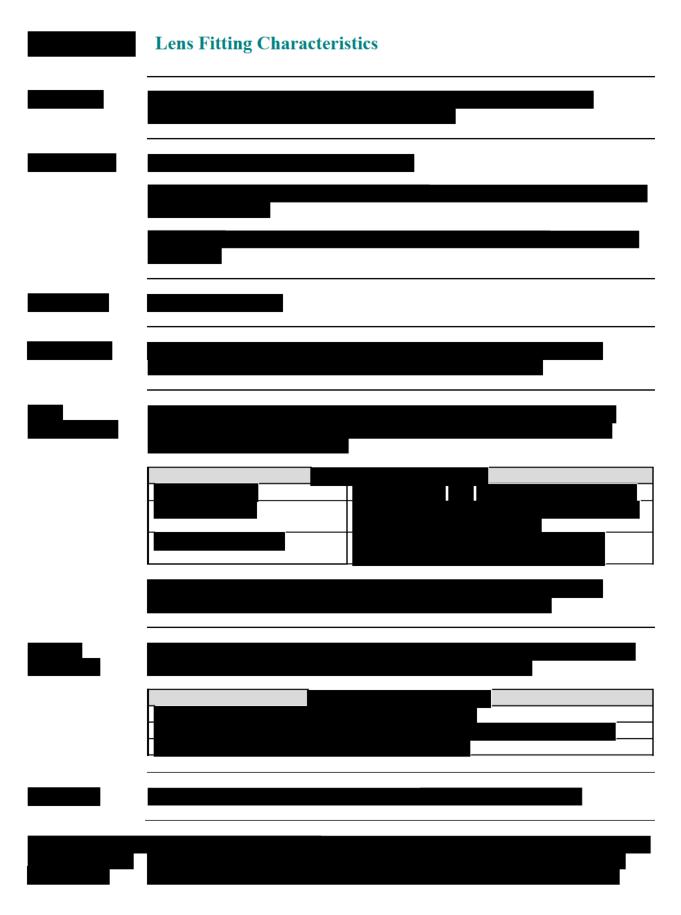
d that the follow

· The eye may burn, sting an d/or itch. There may be less comfort than when the lens was first placed on the eye. . There may be a feeling of something in the eye (foreign body, scratched

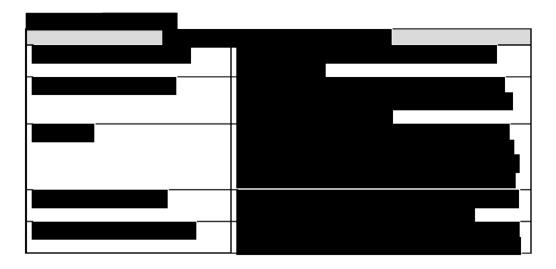
- There may be the potential for some temporary impairment due to I merumay os tra potenzia or some kenpotenzy ingammer, ose (o perphenel militaria, perphe al comeal ukona, nad comeal evaluation. These may be the potential for other physiological dose wators, south aslo act or generalized effort, comea intervoir autoration, comeal stating, hieddin tamai abnormalites, il is and conjunctivitis, some of which are clinically acceptable in how amounts.
- There may be eccessive wate in g. un usual eye secretions or redness of the eve
 - Poor visual acuity, blurred vision, rain bows or halo's around objects, photophobia, or dry eyes may also o ocur if the lenses are worn continuously or
- to o long a time. The patient should be instructed to conduct a simple 8-part self-examina-tion at least once a day. They should ask themselves:
- How do the lenses feel on my eyes?
 How do my eyes look?
 How do my eyes look?
 Have In oticed a change in my uson?
- Examples a substantiation A spectrate refix of a set of the selection of the appropriate length one refixed to status and to guide in the selection of the appropriate length over. If the patient reports any problems, he or she should be instructed to MIMEDIATE-LY REMOVE THE LENS. If the problem or discomfort, slops, the patient should discard the lens and place a new fresh lens on the eye.
- If after in setting the new lens, the problem continues, the patient should be
- directed to INMEDIATELY REMOVE THE LENS AND CONTACT HIS OR HERE YEL CARE PROFESSIONAL

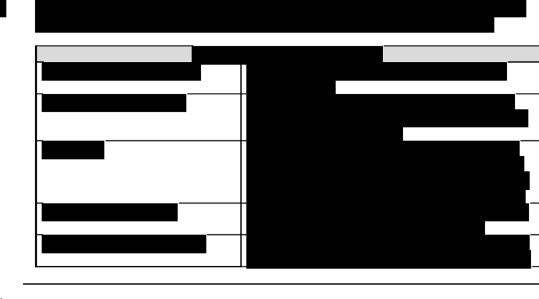
The patient should be instructed NOT to use an ewiens as self-treatment for the

The patient should be advise d that when any of the above symptoms occur, a set ous condition such as infection, comeal ulicer, neovascularization or inits may be present. He or she should be instructed to seek immediate probational identific cation of the problem and prompt te adment to avoid serious eye damage.

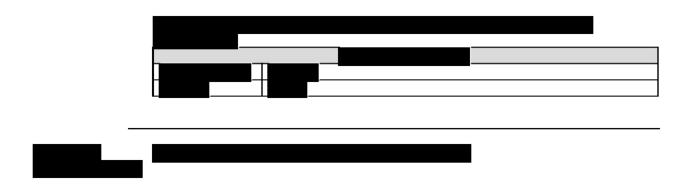

APPENDIX D:

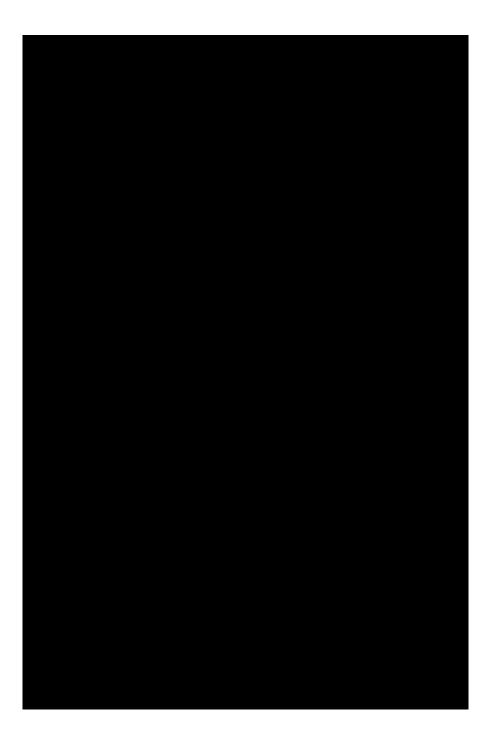
Lens Fitting Characteristics
Subject Reported Ocular Symptoms/Problems
Determination of Distance Spherocylindrical Refractions
Biomicroscopy Scale
Distance and Near Visual Acuity Evaluation
Patient Reported Outcomes





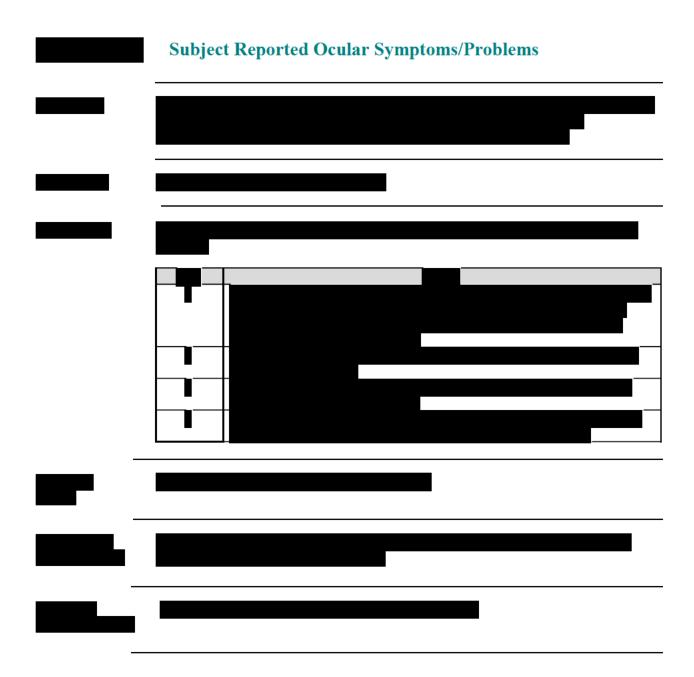
Page 1 of 6




Page 2 of 6

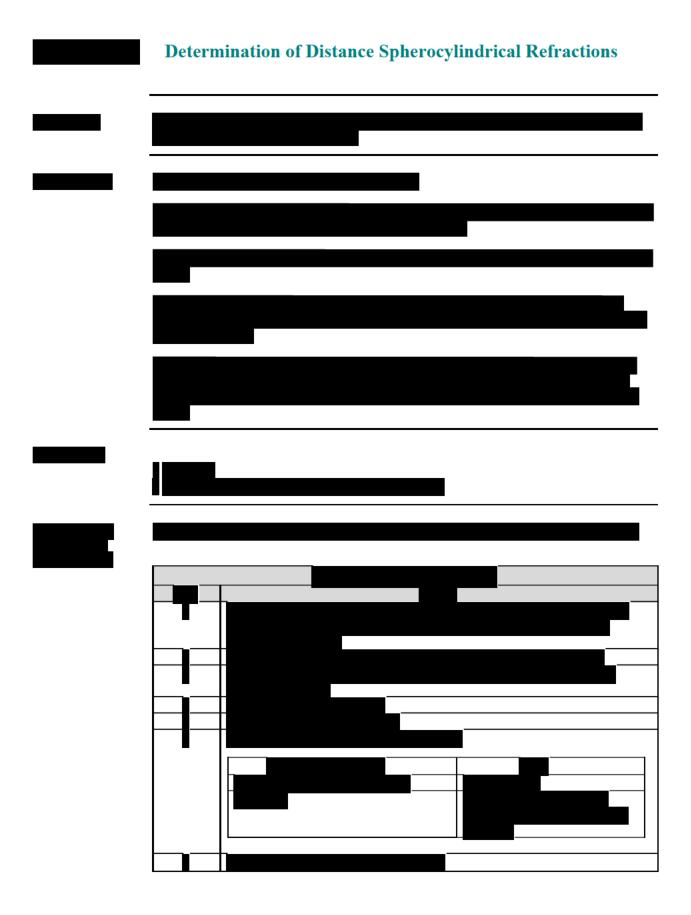
Page 3 of 6

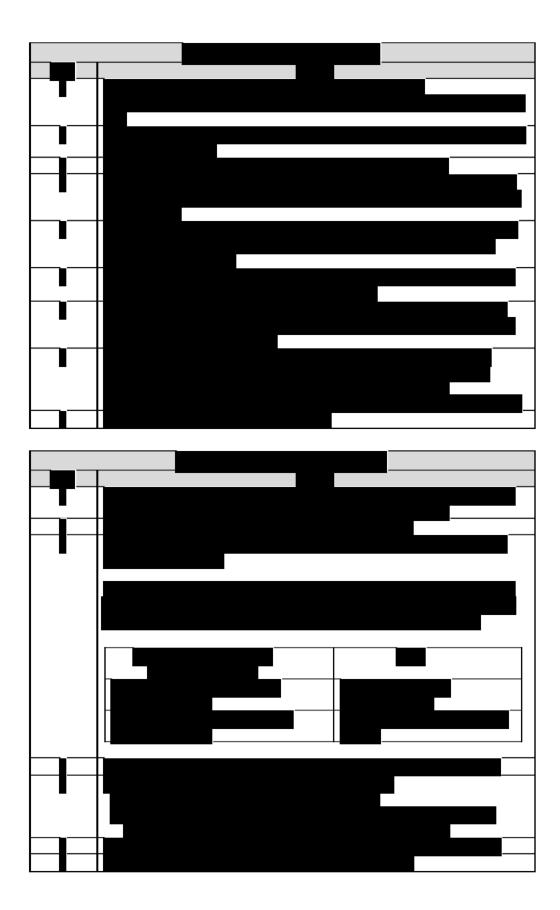
Page 4 of 6


Page 5 of 6

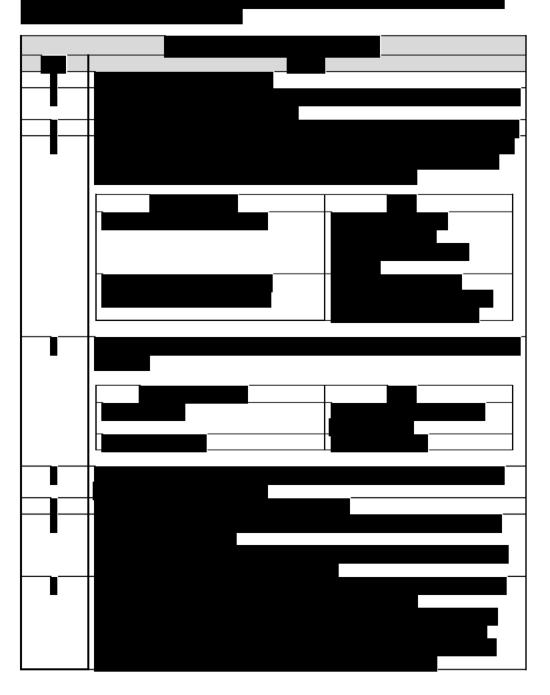
Page 6 of 6

SUBJECT REPORTED OCULAR SYMPTOMS/PROBLEMS

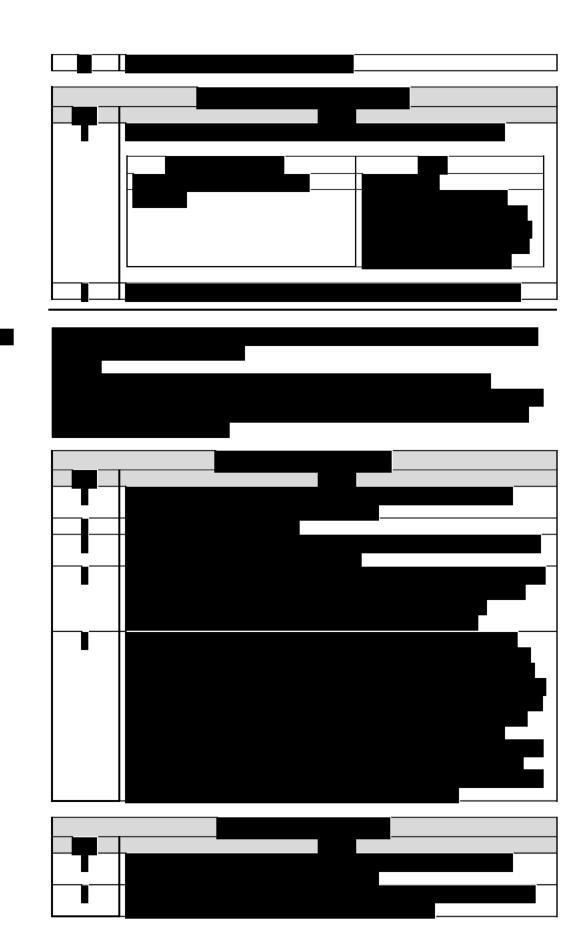


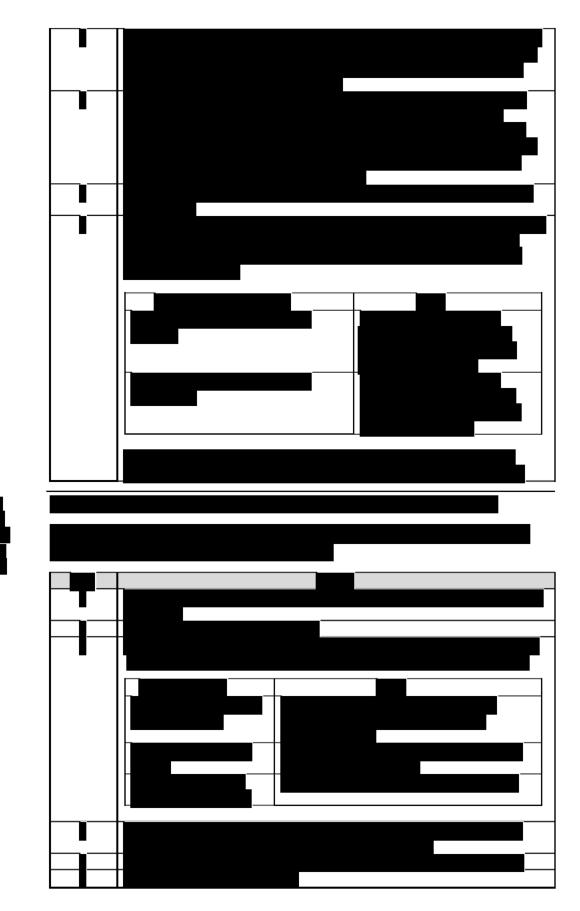

Page 1 of 1

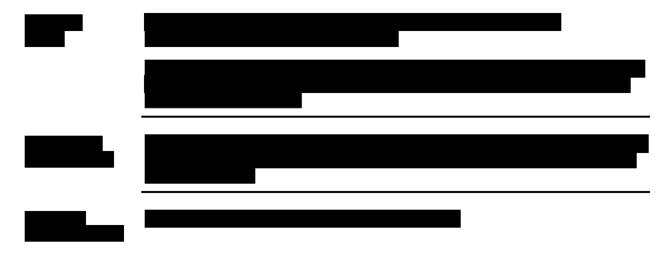
DETERMINATION OF DISTANCE SPHEROCYLINDRICAL REFRACTIONS

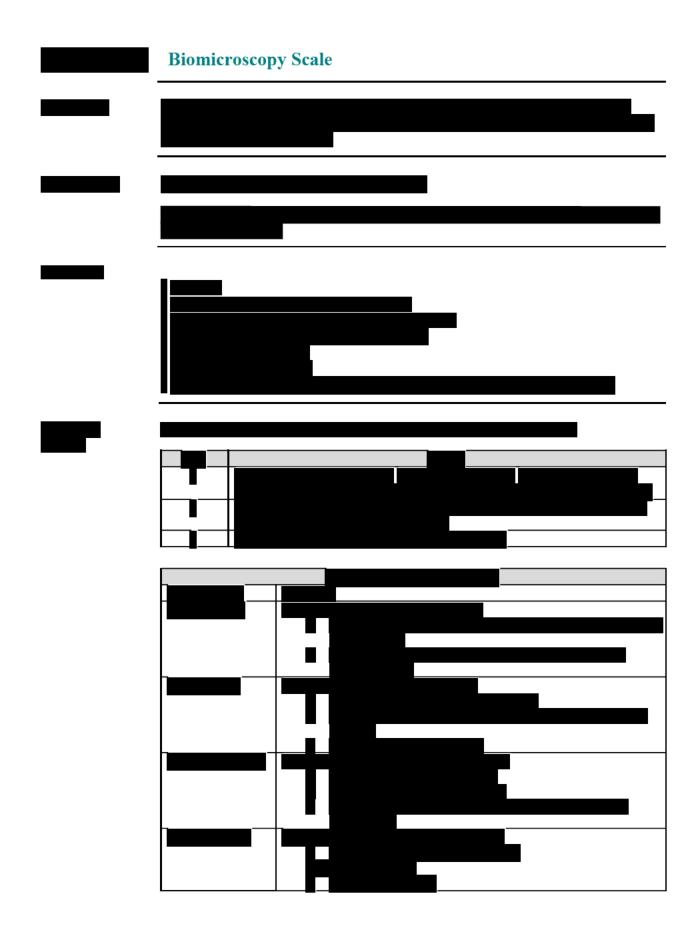


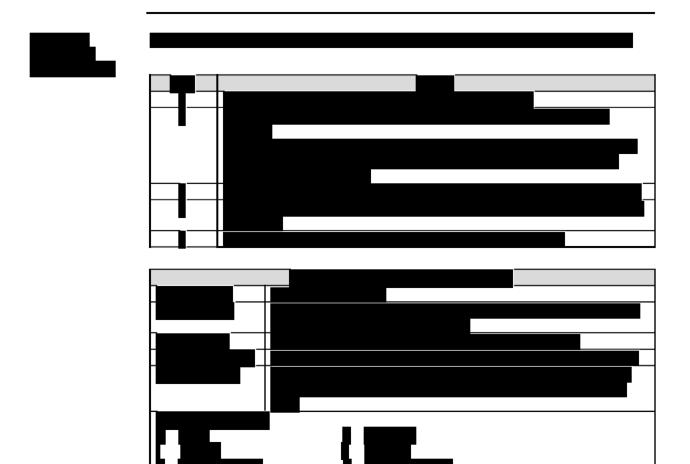
Page 1 of 6

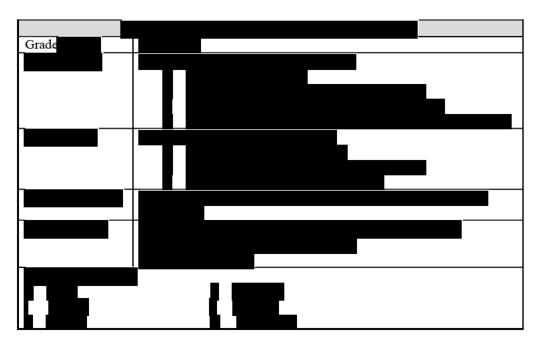


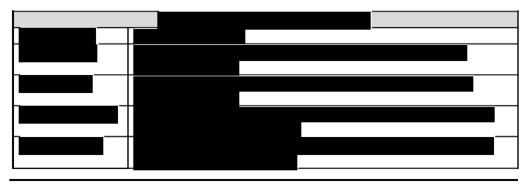




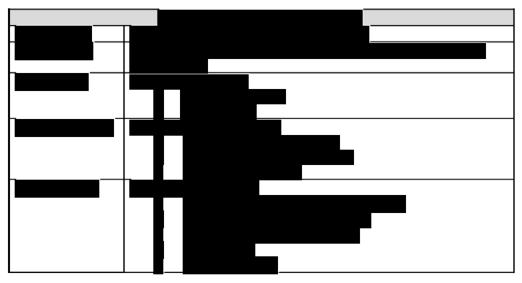

Page 5 of 6


Page 6 of 6

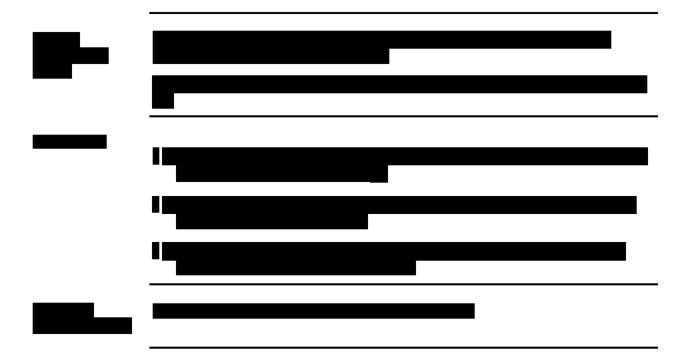

Page 1 of 5

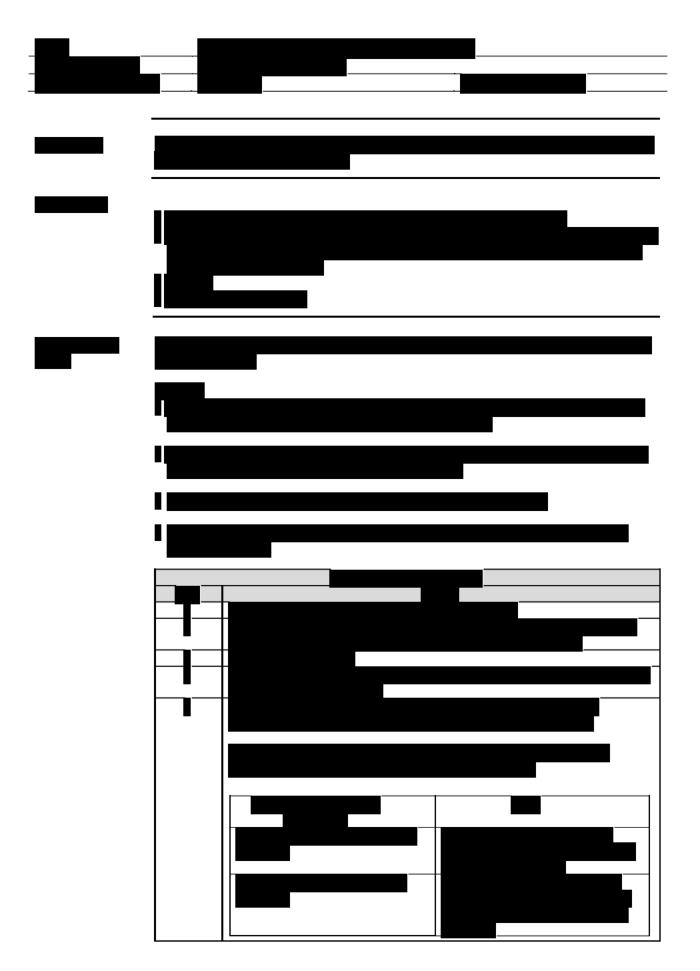


Page 2 of 5

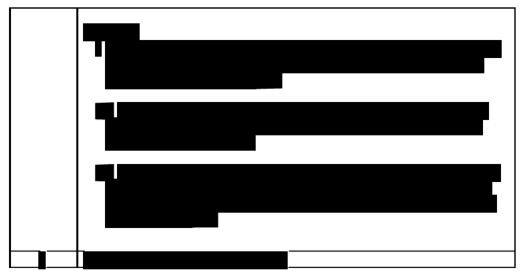


Page 3 of 5

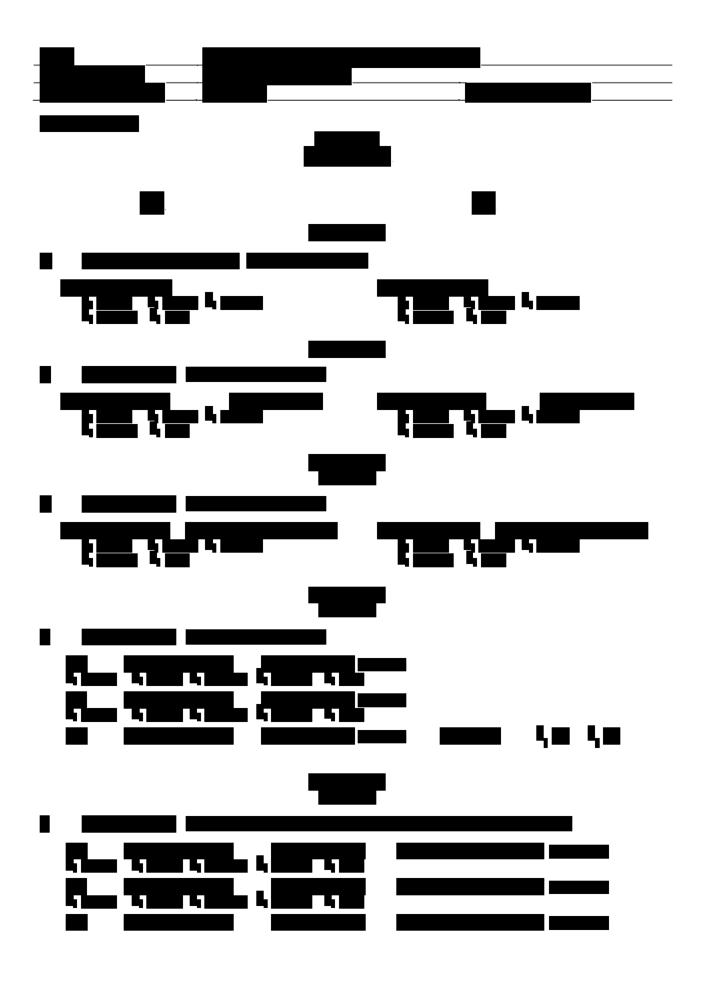




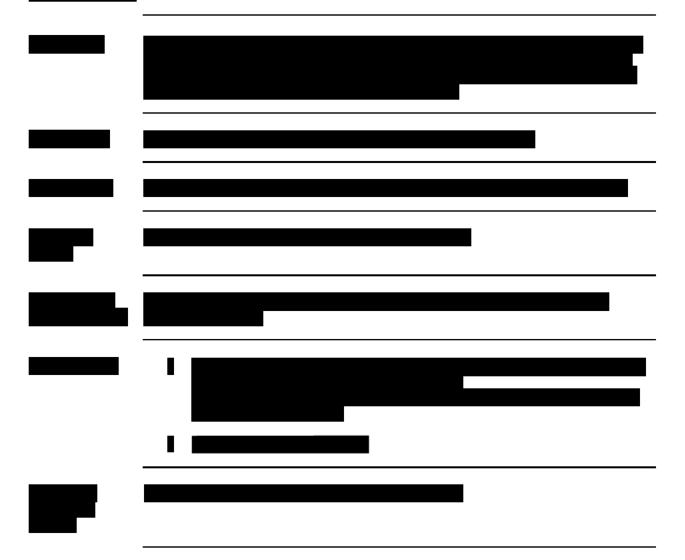
Page 4 of 5


Page 5 of 5

DISTANCE AND NEAR VISUAL ACUITY EVALUATION



Page 2 of 4


Page 3 of 4

Page 4 of 4

PATIENT REPORTED OUTCOMES

Patient Reported Outcomes

Page 1 of 1

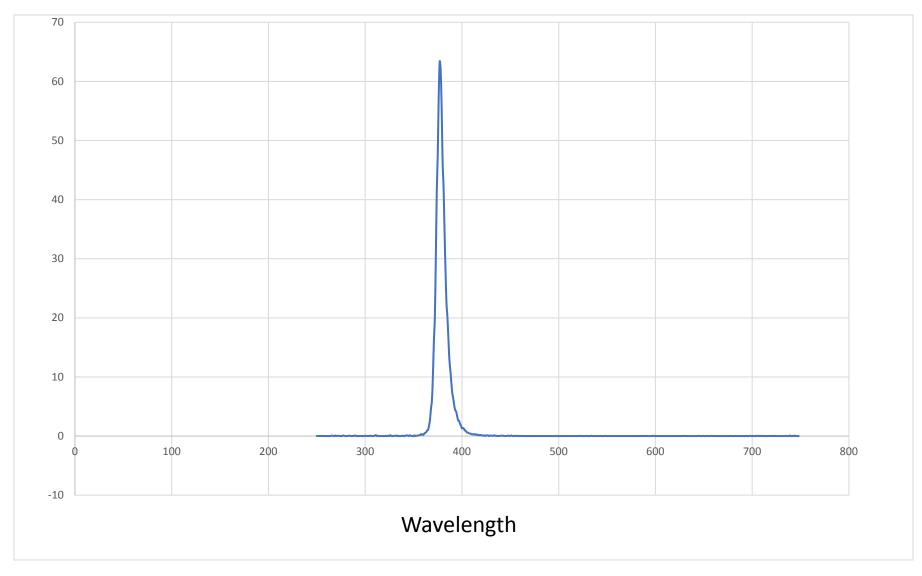
APPENDIX E: DETERMINATION OF EYE DOMINANCY

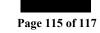
+1.00 D LENS TEST

Step	Procedure
1	Place the subjects best sphero-cylindrical distance refraction in a trial frame
2	Have the subject view a BVA line of letters
3	With both eyes open alternate $a + 1.00$ D trial lens between the right and left eye and ask the subject to indicate over which eye does the lens cause the line of letters to appear more blurred. The eye that the greatest blur is reported is the distance dominant eye. If the subject indicates that the amount of blur is about the same between the two eyes then record as neither eye dominant.

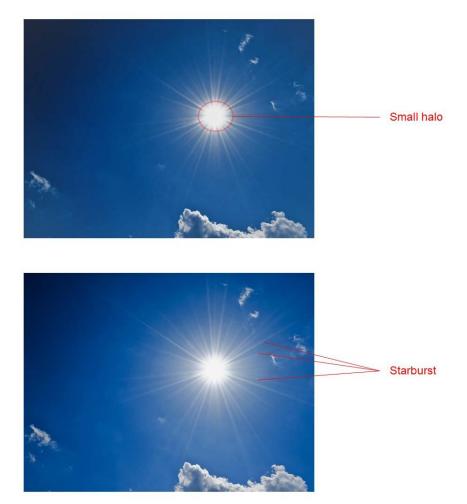
SIGHTING OCULAR DOMINANCE

Step	Procedure
1	Ask the subject to extend both arms out and use his/her hands to form a triangle. The subject will be asked to keep both eyes open, and look through the triangle at a small object on the wall (e.g., a light switch or doorknob).
2	 Occlude the subject's left eye, then right eye. While alternating the occluder from the subject's eyes, ask the subject when they see the object. A. If the subject sees the object when the left eye is covered, the subject is <i>right eye</i> dominant. B. If the subject sees the object when the right eye is covered, the subject is <i>left eye</i> dominant. C. If the subject sees the object with both eyes, the opening between the hands may be too large. Therefore, ask the subject to make a smaller opening and repeat the procedure


APPENDIX F: IRIS COLOR







Irradiance

APPENDIX H: STARBURST AND HALO IMAGES

JJVC CONFIDENTIAL

PROTOCOL COMPLIANCE INVESTIGATOR(S) SIGNATURE PAGE

Protocol Number and Title: CR-6100 The effects of contact lenses with experimental dye on visual function

Version and Date: v2.0 07 June 2018

I have read and understand the protocol specified above and agree on its content.

I agree to conduct this study according to ISO 14155,¹ GCP and ICH guidelines,² the Declaration of Helsinki,³ United States (US) Code of Federal Regulations (CFR),⁴ and the pertinent individual country laws/regulations and to comply with its obligations, subject to ethical and safety considerations. The Principal Investigator is responsible for ensuring that all clinical site personnel, including Sub-Investigators adhere to all ICH² regulations and GCP guidelines regarding clinical trials during and after study completion.

I will assure that no deviation from, or changes to the protocol will take place without prior agreement from the Sponsor and documented approval from the Institutional Review Board (IRB), except where necessary to eliminate an immediate hazard(s) to the trial participants.

I am responsible for ensuring that all clinical site personnel including Sub-Investigators adhere to all ICH² regulations and GCP guidelines regarding clinical trials during and after study completion.

All clinical site personnel involved in the conduct of this study have completed Human Subjects Protection Training.

I agree to ensure that all clinical site personnel involved in the conduct of this study are informed about their obligations in meeting the above commitments.

I shall not disclose the information contained in this protocol or any results obtained from this study without written authorization.

Principal Investigator:

Signature

Date

Name and Professional Position (Printed)

Institution/Site:

Institution/Site Name

Institution/Site Address