Replication of the PRONOUNCE Prostate Cancer Trial in Healthcare Claims Data

DUPLICATE - PRONOUNCE

May 14, 2021

NCT02663908

1. RCT Details

This section provides a high-level overview of a published RCT that the described real-world evidence study is trying to replicate as closely as possible given the remaining limitations inherent in the healthcare databases.

1.1 Title
 Cardiovascular Safety of Degarelix Versus Leuprolide for Advanced Prostate Cancer (PRONOUNCE Trial)

1.2 Intended aim(s)

To compare the incidence of major cardiovascular events (MACE) among advanced prostate cancer subjects treated with degarelix versus leuprolide.

1.3 Primary endpoint for replication

Time from randomization to the first confirmed, adjudicated occurrence of a MACE, which is defined as a composite of allcause death, nonfatal myocardial infarction, or nonfatal stroke through 12 months of ADT treatment.
1.4 Required power for primary endpoint and noninferiority margin (if applicable)

Based on prior literature, it was determined that 66 MACE events and 876 subjects would be required to reject a two-sided null hypothesis of equal hazards with 80% power at a 5% type I error rate. A hazard ratio of 0.49 with absolute event rates of 5.1% and 10.2% (degarelix vs leuprolide) were hypothesized.
1.5 Secondary endpoint for replication (assay sensitivity) and RCT finding

Secondary cardiovascular objectives: To assess 1) the frequency of MACE components individually (i.e., nonfatal myocardial infarction, nonfatal stroke, and all-cause mortality)

1.6 Trial estimate

The trial is ongoing and scheduled to complete in April 2021.

2. Person responsible for implementation of replication in Aetion

David Merola, PharmD, SM and Sushama Kattinakere Sreedhara, MBBS, MSPH, implemented the study design in the Aetion Evidence Platform. They are not responsible for the validity of the design and analytic choices. All implementation steps are recorded, and the implementation history is archived in the platform.
3. Data Source(s)

Optum CDM, IBM ${ }^{\circledR}$ MarketScan® ${ }^{\circledR}$, Medicare Diabetes

4. Study Design Diagram

The study design diagram visualizes key aspects of the longitudinal study design for expedited review.
Figure 1.

5. Cohort Identification

5.1 Cohort Summary

An active-comparator, incident-user design will be employed to compare patients that received degarelix vs. leuprolide. Subjects will be selected on the basis of having at least one diagnosis code indicating prostate cancer, male sex, and a history of atherosclerotic cardiovascular disease. Subjects will be excluded if they were not treatment-naïve with respect to prostate cancer, had a record of uncontrolled diabetes or hypertension within 30 days prior to treatment initiation, had a history of long QT syndrome or risk factors thereof (i.e., heart failure, hypokalemia, or medications known to prolong the QT interval), or an acute myocardial infarction, stroke, or revascularization procedure within 30 days prior to treatment initiation. In contrast to the PRONOUNCE trial, patients cannot be required to have had established tumor staging information, angiography-verified stenosis/occlusion of vessels, and a lack of planned cardiac surgery at the time of treatment initiation due to poor capture of this information in administrative data. All patients were required to have continuous enrollment for 365 days prior to cohort entry to ensure incident use of the study drugs.

5.2 Important steps for cohort formation

Incident use of the exposure (leuprolide or degarelix) is defined as no use of the exposure drug in the 365 days prior to meeting all eligibility criteria and initiation of exposure.

5.2.1 Eligible cohort entry dates

The degarelix indication for treatment of prostate cancer was approved by the FDA on Dec 24, 2008. Leuprolide was initially approved for the same indication prior to Dec 24, 2008.

- IBM ${ }^{\circledR}$ MarketScan ${ }^{\circledR}$: Dec 24, 2008 - December 31, 2018 (end of available data)
- Optum CDM: Dec 24, 2008 - June 30, 2020 (end of available data)
- CMS Diabetes: Dec 24, 2008 - Dec 31, 2017 (end of available data)
5.2.2 Specify inclusion/exclusion criteria for cohort entry and define the index date Inclusion and exclusion criteria were adapted from the trial as closely as possible. Definitions for all inclusion/exclusion are provided in Appendix and are summarized in the flowcharts below.

5.3 Flowchart of the study cohort assembly
 For Degarelix vs Leuprolide

	IBM ${ }^{\text {® }}$ MarketScan ${ }^{\text {® }}$		Optum CDM		CMS - Diabetes	
	Less Excluded Patients	Remaining Patients	Less Excluded Patients	Remaining Patients	Less Excluded Patients	Remaining Patients
All patients in our database		200,203,908		78,202,636		23,466,175
Patients with Degarelix/Leuprolide [measured between Dec 24, 2008 and Dec 31, 2019.]	-199,937,514	266,394	-78,046,787	155,849	-23,212,628	253,547
Excluded due to insufficient enrollment $[-365,0]$	-94,870	171,524	-36,242	119,607	-125,589	127,958
After wash-out for prior use of reference (Leuprolide) [-365, -1]	-106,281	65,243	-77,869	41,738	-96,813	31,145
After wash-out for prior use of exposure (Degarelix) [-365, -1]	-1,959	63,284	-2,152	39,586	-3,394	27,751
Excluded because patient qualified in >1 exposure category	-2	63,282	-1	39,585	-3	27,748
Inclusion only Male gender [-365, 0]	-43,683	19,599	-17,401	22,184	-183	27,565
Inclusion Prostate Cancer [start of all available data, 0]	-784	18,815	-502	21,682	-210	27,355
Inclusion Pre-existing ASCVD [start of all available data, -30]	-14,187	4,628	-15,729	5,953	-16,099	11,256
Exclusion Androgen deprivation therapy (GnRH agonists/antagonists) [-365, 0]	-145	4,483	-106	5,847	-465	10,791
Exclusion Androgen deprivation therapy (hormonal therapy) [-365, -14]	-571	3,912	-744	5,103	-1,759	9,032
Exclusion Androgen deprivation therapy (Orchiectomy) [start of all available data, 0]	-4	3,908	-4	5,099	-9	9,023
Exclusion Uncontrolled Diabetes [-30, 0]	0	3,908	0	5,099	0	9,023
Exclusion Uncontrolled Hypertension [-30, 0]	-28	3,880	-19	5,080	-97	8,926

Exclusion Heart failure [starts of all available data, 0]	-285	3,595	-556	4,524	-1,602	7,324
Exclusion QT syndrome [starts of all available data, 0]	-7	3,588	-9	4,515	-19	7,305
Exclusion Hypokalemia [-90, 0]	-3	3,585	-14	4,501	-37	7,268
Exclusion Hypomagnesemia [-90, 0]	-9	3,576	-7	4,494	-12	7,256
Exclusion QT prolonging medicines [0, 0]	-192	3,384	-191	4,303	-446	6,810
Exclusion Acute MI [-29, 0]	-6	3,378	-9	4,294	-11	6,799
Exclusion Stroke [-29, 0]	-4	3,374	-9	4,285	-23	6,776
Exclusion Revascularization [-29, 0]	-5	3,369	-7	4,278	-6	6,770
Final cohort		3,369		4,278		6,770

6. Variables

6.1 Exposure-related variables:

Study drug:
The study exposure of interest is defined by a HCPCS/CPT code or outpatient prescription drug claim indicating degarelix administration or dispensation, respectively. New initiation will be defined by no such records of degarelix in the prior 365 days before treatment initiation (washout period) and fulfillment of study eligibility criteria.

Comparator agent:

The comparator is defined by an HCPCS/CPT code or outpatient prescription drug claim indicating leuprolide administration or dispensation, respectively. New initiation will be defined by no such records of leuprolide in the prior 365 days before treatment initiation (washout period) and fulfillment of study eligibility criteria.

6.2 Preliminary Covariates:

- Age

The covariate listed above represents only a small subset of the covariate vector that will ultimately be controlled for in the
design and analysis. We use the covariate above only for initial feasibility analyses to judge whether there is likely to be sufficient overlap between treatment groups to proceed with the study. Remaining covariates are defined only after the study has passed the initial feasibility analysis and the initial power assessment and are listed in Table 1 (Appendix B). Gender is not included since the study is already restricted to male subjects.
6.3 Outcome variables and study follow-up:

6.3.1 Outcome variables

Effectiveness outcome variables of interest (definitions provided in Appendix):

- Primary outcome: MACE (all-cause death, nonfatal myocardial infarction, or nonfatal stroke through 12 months of primary treatment with leuprolide or degarelix)
- Secondary outcomes:
- Secondary cardiovascular objectives: To assess 1) the frequency of MACE components individually (i.e., nonfatal myocardial infarction, nonfatal stroke, and all-cause mortality)

6.3.2 Study follow-up

Both as-treated (AT) and intention-to-treat (ITT) analyses will be conducted with treatment defined as the index drug on day of cohort entry. An allowable gap of 90 days between records indicating each treatment will qualify as "continuous therapy" with respect to follow-up in the as-treated analysis.

The follow-up will start the day after drug initiation (i.e., cohort entry date), and will continue until the earliest date of the following events:

- The first occurrence of the outcome of interest,
- The date of end of continuous registration in the database,
- End of the study period,
- Measured death event occurs,
- 365 days
- Switch
- Discontinuation (90 days allowable grace period and risk window)

In the secondary ITT analysis, we will not censor for discontinuation or switching among study drugs

7. Initial Feasibility Analysis

Aetion report name:

For degarelix vs. leuprolide
Optum CDM- https://bwh-dope.aetion.com/projects/details/1636/rwrs/67085
IBM ${ }^{\circledR}$ MarketScan ${ }^{\circledR}$ - https://bwh-dope.aetion.com/projects/details/1323/rwrs/67083
CMS Diabetes - https://bwh-dope.aetion.com/projects/details/1637/rwrs/67081
Date conducted: 03/06/2021
Complete Aetion feasibility analysis using age as the only covariate and the primary endpoint (Section 6.3.1) as the outcome. No measures of association will be computed, nor will incidence rates be stratified by treatment group.

8. Initial Power Assessment

Aetion report name:

- For Degarelix vs Leuprolide
- Optum CDM- https://bwh-dope.aetion.com/projects/details/1636/rwrs/67086
- IBM ${ }^{\circledR}$ MarketScan ${ }^{\circledR}$ - https://bwh-dope.aetion.com/projects/details/1323/rwrs/67084
- CMS Diabetes - https://bwh-dope.aetion.com/projects/details/1637/rwrs/67082

Date conducted:

In order to complete the initial power analysis, a dummy outcome indicating a 90-day gap in database enrollment will be used. This outcome is used to ensure that no information on the comparative risks of the outcomes of interest are available at this stage. A 1:1 PS-matched comparative analysis was performed, including age as the only covariate. Power calculations are based on the formulas from Chow et al. (2008).

- Stop analyses until feasibility and power are reviewed by primary investigators and FDA. Reviewers evaluate the results of the analyses described above in Sections 7 and 8, including numbers of patients, patient characteristics, follow-up time, and reasons for censoring by treatment group, as well as overall rates of outcomes and study power. These parameters are re-evaluated and reported in the subsequent sections, after incorporating feedback and refining the protocol.

Stop analyses until feasibility and power are reviewed by primary investigators, FDA, and assigned members of advisory board.

Reviewed by PI:	Shirley Wang	Date reviewed:	$3 / 17 / 2021$	
Reviewed by FDA:	Ken	Date reviewed:	$4 / 3 / 2021$	
Reasons for stopping analysis (if required):				

9. Balance Assessment

Aetion report name:

For Degarelix vs. leuprolide

Optum CDM- https://bwh-dope.aetion.com/projects/details/1636/rwrs/68435
IBM ${ }^{\circledR}$ MarketScan ${ }^{\circledR}$ - https://bwh-dope.aetion.com/projects/details/1323/rwrs/68424
CMS Diabetes - https://bwh-dope.aetion.com/projects/details/1637/rwrs/68434
Date conducted: 04/14/2021
After review of initial feasibility and power analyses, complete creation of the remaining covariates from Section 6.2. Again, using the dummy outcome of a 90 -day gap in database enrollment, complete a 1:1 PS-matched analysis. The PS should include the complete list of covariates.

- Provide plot of PS distributions stratified by treatment group.

Note- Please refer to Appendix_Table1_PRONOUNCE_v1 (worksheet named 'PS matching').

- Report covariate balance after matching.

Note- Please refer to Appendix_Table1_PRONOUNCE_v1 (worksheet named 'Table 1').

- Report reasons for censoring by treatment group.

	Overall	Referent	Exposure
Start of an additional exposure	$1147(30.39 \%)$	$1(0.05 \%)$	$1146(60.73 \%)$
End of index exposure	$2084(55.22 \%)$	$1645(87.18 \%)$	$439(23.26 \%)$
Specified date reached	$157(4.16 \%)$	$78(4.13 \%)$	$79(4.19 \%)$
Maximum follow-up reached (365 days)	$142(3.76)$	$42(2.23 \%)$	$100(5.30 \%)$
End of patient enrollment	$244(6.46 \%)$	$121(6.41 \%)$	$123(6.52 \%)$

- Report follow-up time by treatment group.

Median Follow-Up Time (Days) [IQR]			
Patient Group	Optum CDM	IBM $^{\circledR}$ MarketScan ${ }^{\circledR}$	CMS - Diabetes
Overall Patient Population	$89[64,116]$	$89[55,118]$	$89[61,109]$
Referent	$89[89,89]$	$89[89,89]$	$89[89,89]$
Exposure	$82[33,140]$	$67[31,126]$	$68[33,125]$

- Report overall risk of the primary outcome.

	Optum CDM	IBM $^{\circledR}$ MarketScan ${ }^{\circledR}$	CMS - Diabetes	Pooled
Risk per 1,000 patients	25.28	12.77	31.17	25.12

10. Final Power Assessment

Date conducted: 4/15/2021

Re-calculate power in the appropriate excel table, using the revised number of matched patients from the PS-match in Section 9. All other parameters in the table should be the same as in Section 8.

- Pooled

Superiority Analysis	
Number of patients matched	3,774
Reference	1,887
Exposed	1,887
Risk per 1,000 patients	25.12
Desired HR from RCT	0.49
Alpha (2-sided)	0.05
	94.80288
Number of events expected	0.93484302
Power	

- Optum CDM

Superiority Analysis	
Number of patients matched	1,092
Reference	546
Exposed	546
Risk per 1,000 patients	25.28
Desired HR from RCT	0.49
Alpha (2-sided)	0.05
	0.465815489

Effectiveness research with Real World Data to support FDA's regulatory decision making

- $\underline{I B M}^{\oplus}$ MarketScan ${ }^{\circledR}$

Superiority Analysis $^{\bullet}$ MarketScan	
Number of patients matched	830
Reference	415
Exposed	415
Risk per 1,000 patients	12.77
Desired HR from RCT	0.49
Alpha (2-sided)	0.05
	10.5991
Number of events expected	0.21311438
Power	

- CMS - Diabetes

Superiority Analysis	
Number of patients matched	1,852
Reference	926
Exposed	926
Risk per 1,000 patients	31.17
Desired HR from RCT	0.49
Alpha (2-sided)	0.05
	57.72684
Number of events expected	0.773370349
Power	

- Stop analyses until balance and final power assessment are reviewed by primary investigators, FDA, and assigned members of advisory board.

Reviewed by PI:	Shirley Wang	Date reviewed:	$4 / 16 / 2021$
Reviewed by FDA:		Date reviewed:	
Reasons for stopping analysis (if required):			

11. Study Confidence and Concerns

Deadline for voting on study confidence and listing concerns:
Date votes and concerns are summarized:

- If final feasibility and power analyses are reviewed and approved, proceed to the remaining protocol steps.
- All study team and advisory board members that review this protocol should at this stage provide their level of confidence for the success of the RWD study in the Google Form. This form also provides space for reviewers to list any concerns that they feel may
contribute to a failure to replicate the findings of the RCT, including differences in study populations, poor measurement of study variables, or residual confounding. All responses will be kept confidential and individual-level results will only be shared with the individual respondent.
- After the deadline for voting has passed, provide the distribution of responses and summarize all concerns here.

12. Register study protocol on clinicalTrials.gov

Date conducted:

- Register the study on clinicalTrials.gov and upload this document.

13. Comparative Analyses

Aetion report name:
Date conducted:
13.1 For primary analysis:
13.2 For sensitivity analyses:

14. Requested Results

14.1 Table 1: Baseline characteristics before and after adjustment

Variable	Before adjustment			After adjustment			
	Referent	Exposure	Std. diff.	Referent	Exposure	Std. diff.	
Number of patients			-			-	
Age categories							
\ldots							

14.2 Table 2: Follow-up time

Patient Group	Median Follow-Up Time (Days) [IQR]
Overall Patient Population	
Referent	
Exposure	

14.3 Table 3: Censoring events

	Overall	Referent	Exposure
Outcome			
Death			
Start of an additional exposure			
End of index exposure			
Specified date reached			
End of patient data			
End of patient enrollment			
\ldots			

14.4 Table 4: Results from primary analyses;

Analysis	No. exposed events	No. referent events	Exposed rate	Referent rate	HR (95\% CI)
Crude					
Analysis 1					
Analysis 2					
\ldots					

HR, Hazard Ratio; CI, Confidence Interval.
14.5 Table 5: Results from secondary analyses;

Effectiveness research with Real World Data to support FDA's regulatory decision making
15. References

Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman \& Hall/CRC Biostatistics Series. page 177

Appendix A

Information from Trial
Trial Name: PRONOUNCE https://www.clinicaltrials.gov/ct2/show/NCT02663908
NCT: NCT02663908

Therapeutic Area: Oncology
RCT Category: Equivalence/Superiority
Brand Name: Firmagon

Generic Name: Degarelix

Sponsor: Ferring Pharmaceuticals
Year: 2016 - Present
Measurable Endpoint: MACE
Exposure: Degarelix

Comparator: Leuprolide
Populuation: Men of any age with with advance prostate cancer and predefined CV disease
No. of Patients: TBD

Power: TBD

Appendix A

*	PRONOUNCE trial definitions	Implementation in routine care	References/Rationale	Color coding
		TRIAL DETAILS		ceners
		Exposure vs. Companson	Till	
		Oenemele		
				Combememendincams
				be measured in claims but not important for the analysis
	Ogsally conimed demeasarioma of the postate	Malignant Neoplasm of the Prostate ICD-9 diagnosis: $185 . x x$ (inpatient and outpatient) Sex: Male		
2	Tiner			
		EXCLUSION CRITERIAMeasured [-365, 0] in an inpatient or oupatient care setting in any diagnosis position GnRH Agonists: generic name: goserelin, triptorelin, histrelin HCPCS/CPT: goserelin: $19202 \mathrm{S9560}$; triptorelin: $J 3315 \mathrm{~J} 3316$ histrelin: $J 1675 J 9225 \mathrm{~J} 9226 \mathrm{Q} 2020 \mathrm{SO133}$ (inpatient and outpatient) Measured [-365, -14] Hormonal Therapy: generic name: abiraterone, ketoconazole, flutamide, bicalutamide, nilutamide, enzalutamide, apalutamide, finasteride, dutasteride HCPCS/CPT: flutamide: S0175 finasteride: S0138	Source:https://jamanetwork.com/journals//jamaoncology/article-abstract/2476248 Patients may fill prescription and initiate androgen blockade ~1-2 weeks prior to start of LHRH agonist for flare protection	
2			patients may initiate androgen blockade for flare within 14 days of initial treatment, which is permissible per resources. Cetrorelix and ganirelix are anly on the market for a short period of time prior to the span of our data cancer.	
		Measured [-30, 0] in an inpatient care setting in a primary diagnosis positionUncontrolled DiabetesICD-9: 790.29 ICD-10: R73.09, R73.9	Source: Codes from Duplicate standard measure library (https://bwh- An inpatient, primary diagnosis of hyperglycemia is thought to be a good proxy for uncontrolled diabetes based on the investigators' substantive knowledge.	
		Malignant hypertension/Hypertensive crisis: \quad ICD-9 diagnosis: $401.9,362.11,401.0,402.0 \mathrm{x}, 403.0 \mathrm{x}, 404.0 \mathrm{x}, 405.0 \mathrm{x}, 403.9 \mathrm{x}, 437.2,796.2$ ICD-10 diagnosis: 116	Source: DUPLICATE Team (EMPEROR-Preserved trial) Malignant HTN clinically defined as SBP> 180 mmHg	
		LCD-9 diagnosis: 426.82 Measured $[-365,0]$ in an 1 inpatient code or 2 outpatient codes in any diagnosis position Heart failure: \quad ICD-9 diagnosis: 428.x 398.91, 402.01, 402.11, 402.91, 404.01, 404.11, 404.91, 404.03, 404.13, 404.93 [$[-90,0]$ in an inpatient or outpatient care setting in any diagnosis position Hypokalemia: 276.8 5. E 87.6 Hypomagnesemia: ICD-10 diagnosis: E83.4 Measured [0,0] QT-prolonging medications: : generic name: amiodarone, anagrelide, azithromycin, chloroquine, atovaquone/proguanil, chlorpromazine, cilostazol, ciprofloxacin, citalopram, clarithromycin, disopyramide, hydrocodone, iloperidone, melipramine, lopinavir, ritonavir, necitumumab, norfloxacin, panobinostat, pimavanserin, ribociclib, telavancin, vorinostat	Souces: DUPLICATE Standard Measure ("Heart Failure (CHF) Ever Lookback"); CPRD Measure Library ("REPEAT_Redact_135_QT Prolonging drugs"); Aetion Search; Aetion Search Electrolyte imbalances and QT-prolonging medicines from >90 days are irrelevant, while heart failure and congenital long QT are chronic conditions that will persist despite occurrence from long ago	

Appendix A

Medicare
Allvariables under Table 1 is used in PS matching except LLithium

Figure 1: Pre-matching propensity score overlap

Figure 1: Pre-matching propensity score overlap

■ $\boldsymbol{E}_{\text {■ }}^{\text {r }}$

Figure 1: Pre-matching propensity score overlap

The e-sta tistics for the propensity score model, pre-mat ching was 0.669 . The post-matching c-sta tistic was

■ ■ $_{\text {■ }}^{\text {R }}$

Figure 2: Post-matching propensity score overlap

Table 1: Unmatched

UNMATCHED													
	Optum			Marketscan			Medicare			Pooled			
Variable	Leuprolide	Degarelix	St. Diff										
Number of patients	3,681	597		2,938	431		5,829	941		12,448	1,969		
Year of Cohort Entry Date													
...2008-2009; n (\%)	262 (7.1\%)	0 (0.0\%)	0.39	312 (10.6\%)	0 (0.0\%)	0.49	353 (6.1\%)	0 (0.0\%)	0.36	927 (7.4\%)	0 (0.0\%)		0.40
2010; n (\%)	265 (7.2\%)	$21(3.5 \%)$	0.16	358 (12.2\%)	24 (5.6\%)	0.23	427 (7.3\%)	37 (3.9\%)	0.15	1,050 (8.4\%)	82 (4.2\%)		0.17
2011; n (\%)	263 (7.1\%)	25 (4.2\%)	0.13	421 (14.3\%)	45 (10.4\%)	0.12	467 (8.0\%)	49 (5.2\%)	0.11	1,151 (9.2\%)	119 (6.0\%)		0.12
.2012; n (\%)	245 (6.7\%)	41(6.9\%)	-0.01	377 (12.8\%)	50 (11.6\%)	0.04	485 (8.3\%)	69 (7.3\%)	0.04	1,107 (8.9\%)	160 (8.1\%)		0.03
...2013; n (\%)	241 (6.5\%)	54 (9.0\%)	-0.09	357 (12.2\%)	56 (13.0\%)	-0.02	757 (13.0\%)	121 (12.9\%)	0.00	1,355 (10.9\%	231 (11.7\%)		-0.03
.2014; n (\%)	247 (6.7\%)	38 (6.4\%)	0.01	268 (9.1\%)	48 (11.1\%)	-0.07	888 (15.2\%)	177 (18.8\%)	-0.10	1,403 (11.3\%	263 (13.4\%)		-0.06
2015; n (\%)	258 (7.0\%)	44 (7.4\%)	-0.02	257 (8.7\%)	66 (15.3\%)	-0.20	1,009 (17.3\%	171 (18.2\%)	-0.02	1,524 (12.2\%	281 (14.3\%)		-0.06
2016; n (\%)	322 (8.7\%)	67 (11.2\%)	-0.08	281 (9.6\%)	65 (15.1\%)	-0.17	784 (13.4\%)	148 (15.7\%)	-0.07	1,387 (11.1\%	280 (14.2\%)		-0.09
.2017; n (\%)	399 (10.8\%)	78 (13.1\%)	-0.07	193 (6.6\%)	50 (11.6\%)	-0.17	659 (11.3\%)	169 (18.0\%)	-0.19	1,251 (10.0\%	297 (15.1\%)		-0.15
...2018; n (\%)	435 (11.8\%)	86 (14.4\%)	-0.08	114 (3.9\%)	27 (6.3\%)	-0.11	------	-----					
2019; n (\%)	479 (13.0\%)	103 (17.3\%)	-0.12	----	-----		----	----					
...2020; n (\%)	265 (7.2\%)	40 (6.7\%)	0.02	-----	---		----	----					
Age													
...mean (sd)	75.71 (7.42)	75.93 (7.65)	-0.03	74.38 (9.05)	74.49 (9.12)	-0.01	76.85 (6.58)	76.94 (6.49)	-0.01	75.93 (7.48)	76.10 (7.49)		-0.02
...median [IQR]	76.00 [71.00,	76.00 [71.00,	0.00	75.00 [68.00,	75.00 [68.00,	0.00	76.00 [72.00,	77.00 [72.00,	-0.15	75.76 (8.66)	76.26 (8.81)		-0.06
Region													
...1-Northeast; n (\%)	366 (9.9\%)	99 (16.6\%)	-0.20	423 (14.4\%)	95 (22.0\%)	-0.20	1,018 (17.5\%	194 (20.6\%)	-0.08	1,807 (14.5\%	388 (19.7\%)		-0.14
. 2 - North Central; n (\%)	1,037 (28.2\%	143 (24.0\%)	0.10	1,176 (40.0\%	150 (34.8\%)	0.11	1,482 (25.4\%	225 (23.9\%)	0.03	3,695 (29.7\%	518 (26.3\%)		0.08
...3-South; n (\%)	1,352 (36.7\%	221 (37.0\%)	-0.01	914 (31.1\%)	137 (31.8\%)	-0.02	2,336 (40.1\%	375 (39.9\%)	0.00	4,602 (37.0\%	733 (37.2\%)		0.00
...4-West; n (\%)	925 (25.1\%)	131(21.9\%)	0.08	420 (14.3\%)	49 (11.4\%)	0.09	988 (16.9\%)	147 (15.6\%)	0.04	2,333 (18.7\%	327 (16.6\%)		0.06
Race													
White; n (\%)	2,727 (74.1\%	448 (75.0\%)	-0.02	----	---		4,818 (82.7\%	806 (85.7\%)	-0.08	7,545 (60.6\%	1,254 (63.7\%		-0.06
.Asian; n (\%)	75 (2.0\%)	11 (1.8\%)	0.01	----	----		85 (1.5\%)	>11	0.06	160 (1.3\%)	19 (1.0\%)		0.03
.Black; n (\%)	346 (9.4\%)	62 (10.4\%)	-0.03	\cdots			628 (10.8\%)	86 (9.1\%)	0.06	974 (7.8\%)	148 (7.5\%)		0.01
...Hispanic; n (\%)	228 (6.2\%)	39 (6.5\%)	-0.01	-----			135 (2.3\%)	>11	0.09	363 (2.9\%)	$49(2.5 \%)$		0.02
.North American Native; n (\%)				----			28 (0.5\%)	>11	0.01	28 (0.5\%)	4 (0.4\%)		0.01
\ldots...Other; n (\%)		----		---	--		108 (1.9\%)	16 (1.7\%)	0.02	108 (1.9\%)	16 (1.7\%)		0.02
Cardiovascular event prognosticators													
Acute or Old M1; n (\%)	1,428 (38.8\%	232 (38.9\%)	0.00	713 (24.3\%)	97 (22.5\%)	0.04	2,039 (35.0\%	354 (37.6\%)	-0.05	4,180 (33.6\%	683 (34.7\%)		-0.02
Anxiety; n (\%)	228 (6.2\%)	37 (6.2\%)	0.00	125 (4.3\%)	24 (5.6\%)	-0.06	399 (6.8\%)	58 (6.2\%)	0.02	752 (6.0\%)	119 (6.0\%)		0.00
Atrial Fibrillation; n (\%)	633 (17.2\%)	101 (16.9\%)	0.01	387 (13.2\%)	73 (16.9\%)	-0.10	1,148 (19.7\%	207 (22.0\%)	-0.06	2,168 (17.4\%	381 (19.3\%)		-0.05
Coronary Atherosclerosis, n (\%)	2,781 (75.6\%	475 (79.6\%)	-0.10	2,116 (72.0\%	316 (73.3\%)	-0.03	4,790 (82.2\%	776 (82.5\%)	-0.01	9,687 (77.8\%	1,567 (79.6\%		-0.04
Coronary, Carotid, Illiac, Femoral, and Popliteal Revascularization (Angioplasty/Stent/CABG); n	358 (9.7\%)	50 (8.4\%)	0.05	269 (9.2\%)	35 (8.1\%)	0.04	611 (10.5\%)	71(7.5\%)	0.10	1,238 (9.9\%)	156 (7.9\%)		0.07
Diabetes with Complications; n (\%)	1,297 (35.2\%	208 (34.8\%)	0.01	357 (12.2\%)	63 (14.6\%)	-0.07	4,642 (79.6\%	736 (78.2\%)	0.03	6,296 (50.6\%	1,007 (51.1\%		-0.01
Diabetes without Complications; n (\%)	747 (20.3\%)	131 (21.9\%)	-0.04	945 (32.2\%)	143 (33.2\%)	-0.02	2,203 (37.8\%	355 (37.7\%)	0.00	3,895 (31.3\%	629 (31.9\%)		-0.01
DVT; n (\%)	150 (4.1\%)	$27(4.5 \%)$	-0.02	108 (3.7\%)	6 (1.4\%)	0.15	257 (4.4\%)	43 (4.6\%)	-0.01	515 (4.1\%)	76 (3.9\%)		0.01
Edema; n (\%)	344 (9.3\%)	68 (11.4\%)	-0.07	178 (6.1\%)	30 (7.0\%)	-0.04	721 (12.4\%)	138 (14.7\%)	-0.07	1,243 (10.0\%	236 (12.0\%)		-0.06
Erectile dysfunction; n (\%)	455 (12.4\%)	82 (13.7\%)	-0.04	265 (9.0\%)	44 (10.2\%)	-0.04	705 (12.1\%)	123 (13.1\%)	-0.03	1,425 (11.4\%	249 (12.6\%)		-0.04
Foot ulcer; n (\%)	90 (2.4\%)	23 (3.9\%)	-0.09	52 (1.8\%)	10 (2.3\%)	-0.04	262 (4.5\%)	49 (5.2\%)	-0.03	404 (3.2\%)	82 (4.2\%)		-0.05
Hyperlipidemia; n (\%)	3,088 (83.9\%	511 (85.6\%)	-0.05	1,865 (63.5\%	302 (70.1\%)	-0.14	5,283 (90.6\%	858 (91.2\%)	-0.02	10,236 (82.2	1,671 (84.9\%		-0.07
Hypertension; n (\%)	3,188 (86.6\%	522 (87.4\%)	-0.02	2,192 (74.6\%	331 (76.8\%)	-0.05	5,428 (93.1\%	880 (93.5\%)	-0.02	10,808 (86.8	1,733 (88.0\%		-0.04
Intracranial or Retroperitoneal Hemorrhage ; n (\%)	54 (1.5\%)	5 (0.8\%)	0.07	20 (0.7\%)	5 (1.2\%)	-0.05	92 (1.6\%)	>11	-0.02	166 (1.3\%)	27 (1.4\%)		-0.01
Ischemic Heart Disease; n (\%)	3,026 (82.2\%	504 (84.4\%)	-0.06	2,250 (76.6\%	333 (77.3\%)	-0.02	5,000 (85.8\%	806 (85.7\%)	0.00	10,276 (82.6	1,643 (83.4\%		-0.02
Ischemic Stroke; n (\%)	644 (17.5\%)	119 (19.9\%)	-0.06	497 (16.9\%)	79 (18.3\%)	-0.04	1,510 (25.9\%	232 (24.7\%)	0.03	2,651 (21.3\%	430 (21.8\%)		-0.01
Major Trauma; n (\%)	196 (5.3\%)	30 (5.0\%)	0.01	117 (4.0\%)	21(4.9\%)	-0.04	410 (7.0\%)	56 (6.0\%)	0.04	723 (5.8\%)	107 (5.4\%)		0.02
Obesity; n (\%)	524 (14.2\%)	68 (11.4\%)	0.08	252 (8.6\%)	47 (10.9\%)	-0.08	976 (16.7\%)	164 (17.4\%)	-0.02	1,752 (14.1\%	279 (14.2\%)		0.00
Other Disorders of Thyroid Gland; n (\%)	112 (3.0\%)	18(3.0\%)	0.00	69 (2.3\%)	13 (3.0\%)	-0.04	262 (4.5\%)	38 (4.0\%)	0.02	443 (3.6\%)	69 (3.5\%)		0.01
Overweight; n (\%)	294 (8.0\%)	46 (7.7\%)	0.01	$83(2.8 \%)$	13 (3.0\%)	-0.01	208 (3.6\%)	42 (4.5\%)	-0.05	585 (4.7\%)	101 (5.1\%)		-0.02
PE; n (\%)	59 (1.6\%)	10 (1.7\%)	-0.01	39 (1.3\%)	2 (0.5\%)	0.08	99 (1.7\%)	14 (1.5\%)	0.02	197 (1.6\%)	26 (1.3\%)		0.03
Peripheral Vascular Disease; n (\%)	1,234 (33.5\%	205 (34.3\%)	-0.02	705 (24.0\%)	117 (27.1\%)	-0.07	1,798 (30.8\%	277 (29.4\%)	0.03	3,737 (30.0\%	599 (30.4\%)		-0.01
Stable Angina; n (\%)	490 (13.3\%)	83 (13.9\%)	-0.02	276 (9.4\%)	37 (8.6\%)	0.03	769 (13.2\%)	115 (12.2\%)	0.03	1,535 (12.3\%	235 (11.9\%)		0.01
Systemic Embolism; n (\%)	60 (1.6\%)	$11(1.8 \%)$	-0.02	49 (1.7\%)	10 (2.3\%)	-0.04	109 (1.9\%)	>11	0.07	218 (1.8\%)	31 (1.6\%)		0.02
TIA; n (\%)	$90(2.4 \%)$	22 (3.7\%)	-0.08	63 (2.1\%)	10 (2.3\%)	-0.01	266 (4.6\%)	36 (3.8\%)	0.04	419 (3.4\%)	$68(3.5 \%)$		-0.01
General Health/Mortality Prognosticators													
Abnormal liver function; n (\%)	333 (9.0\%)	55 (9.2\%)	-0.01	189 (6.4\%)	28 (6.5\%)	0.00	574 (9.8\%)	97 (10.3\%)	-0.02	1,096 (8.8\%)	180 (9.1\%)		-0.01
Alcohol Abuse/Dependence; n (\%)	72 (2.0\%)	$17(2.8 \%)$	-0.05	33 (1.1\%)	5 (1.2\%)	-0.01	108 (1.9\%)	19 (2.0\%)	-0.01	213 (1.7\%)	41 (2.1\%)		-0.03
Anemias (Sickle-Cell, G6PD Deficiency, Nutrient Deficiency); n (\%)	840 (22.8\%)	157 (26.3\%)	-0.08	492 (16.7\%)	72 (16.7\%)	0.00	1,970 (33.8\%	286 (30.4\%)	0.07	3,302 (26.5\%	515 (26.2\%)		0.01
Asthma; n (\%)	150 (4.1\%)	22 (3.7\%)	0.02	106 (3.6\%)	22 (5.1\%)	-0.07	351 (6.0\%)	58 (6.2\%)	-0.01	607 (4.9\%)	102 (5.2\%)		-0.01
COPD; n (\%)	859 (23.3\%)	137 (22.9\%)	0.01	502 (17.1\%)	79 (18.3\%)	-0.03	1,421 (24.4\%	223 (23.7\%)	0.02	2,782 (22.3\%	439 (22.3\%)		0.00
Delirium; n (\%)	69 (1.9\%)	16 (2.7\%)	-0.05	50 (1.7\%)	5 (1.2\%)	0.04	177 (3.0\%)	36 (3.8\%)	-0.04	296 (2.4\%)	57 (2.9\%)		-0.03

Table 1: Unmatched

Dementia; n (\%)	101 (2.7\%)	18 (3.0\%)	-0.02	56 (1.9\%)	10 (2.3\%)	-0.03	222 (3.8\%)	$31(3.3 \%)$	0.03	379 (3.0\%)	59 (3.0\%)	0.00
Depression ; n (\%)	318 (8.6\%)	48 (8.0\%)	0.02	157 (5.3\%)	25 (5.8\%)	-0.02	561 (9.6\%)	77 (8.2\%)	0.05	1,036 (8.3\%)	150 (7.6\%)	0.03
Fall s, n (\%)	229 (6.2\%)	42 (7.0\%)	-0.03	68 (2.3\%)	13 (3.0\%)	-0.04	351 (6.0\%)	72 (7.7\%)	-0.07	648 (5.2\%)	127 (6.4\%)	-0.05
Fractures; n (\%)	226 (6.1\%)	32 (5.4\%)	0.03	147 (5.0\%)	22 (5.1\%)	0.00	341 (5.9\%)	47 (5.0\%)	0.04	714 (5.7\%)	101 (5.1\%)	0.03
HIV/AIDS; n (\%)	6 (0.2\%)	2 (0.3\%)	-0.02	1 (0.0\%)	0 (0.0\%)		>11	>11	-0.04	14 (0.1\%)	5 (0.3\%)	-0.04
Organ Transplant; n (\%)	16 (0.4\%)	5 (0.8\%)	-0.05	20 (0.7\%)	4 (0.9\%)	-0.02	45 (0.8\%)	>11	0.04	81 (0.7\%)	14 (0.7\%)	0.00
Osteoporosis; n (\%)	201 (5.5\%)	27 (4.5\%)	0.05	134 (4.6\%)	14 (3.2\%)	0.07	399 (6.8\%)	56 (6.0\%)	0.03	734 (5.9\%)	97 (4.9\%)	0.04
Peptic Ulcer Disease; n (\%)	892 (24.2\%)	154 (25.8\%)	-0.04	437 (14.9\%)	80 (18.6\%)	-0.10	1,593 (27.3\%	259 (27.5\%)	0.00	2,922 (23.5\%	493 (25.0\%)	-0.04
Pneumonia; n (\%)	72 (2.0\%)	$17(2.8 \%)$	-0.05	134 (4.6\%)	17 (3.9\%)	0.03	108 (1.9\%)	19 (2.0\%)	-0.01	314 (2.5\%)	$53(2.7 \%)$	-0.01
Renal Failure; n (\%)	775 (21.1\%)	142 (23.8\%)	-0.06	393 (13.4\%)	57 (13.2\%)	0.01	1,467 (25.2\%	252 (26.8\%)	-0.04	2,635 (21.2\%	451 (22.9\%)	-0.04
Renal Failure (CKD Stage 4 or higher); n (\%)	128 (3.5\%)	20 (3.4\%)	0.01	95 (3.2\%)	$12(2.8 \%)$	0.02	311 (5.3\%)	50 (5.3\%)	0.00	534 (4.3\%)	82 (4.2\%)	0.00
Sleep Apnea; n (\%)	432 (11.7\%)	57 (9.5\%)	0.07	317 (10.8\%)	44 (10.2\%)	0.02	741 (12.7\%)	109 (11.6\%)	0.03	1,490 (12.0\%	210 (10.7\%)	0.04
Sleep Disorder; n (\%)	295 (8.0\%)	29 (4.9\%)	0.13	307 (10.4\%)	39 (9.0\%)	0.05	760 (13.0\%)	104 (11.1\%)	0.06	1,362 (10.9\%	172 (8.7\%)	0.07
Smoking; n (\%)	1,015 (27.6\%	194 (32.5\%)	-0.11	352 (12.0\%)	71 (16.5\%)	-0.13	1,758 (30.2\%	296 (31.5\%)	-0.03	3,125 (25.1\%	561 (28.5\%)	-0.08
...mean (sd)	0.17 (0.05)	0.17 (0.05)	0.00	0.16 (0.05)	0.16 (0.05)	0.00	0.20 (0.06)	0.19 (0.06)	0.17	0.18 (0.05)	0.18 (0.06)	0.00
...median [IQR]	$0.16[0.13,0$.	$0.16[0.13,0$.	0.00	0.15 [0.13, 0 .	0.15 [0.13, 0 .	0.00	0.19 [0.16, 0.	$0.18[0.15,0$.	0.17	0.17 (0.06)	0.17 (0.06)	0.00
Healthcare utilization												
Any hospitalization; n (\%)	905 (24.6\%)	155 (26.0\%)	-0.03	786 (26.8\%)	95 (22.0\%)	0.11	1,691 (29.0\%	250 (26.6\%)	0.05	3,382 (27.2\%	500 (25.4\%)	0.04
Bone mineral density; n (\%)	162 (4.4\%)	23 (3.9\%)	0.03	78 (2.7\%)	10 (2.3\%)	0.03	245 (4.2\%)	43 (4.6\%)	-0.02	485 (3.9\%)	76 (3.9\%)	0.00
BUN tests; n (\%)	502 (13.6\%)	89 (14.9\%)	-0.04	281 (9.6\%)	48 (11.1\%)	-0.05	1,151 (19.7\%	184 (19.6\%)	0.00	1,934 (15.5\%	321 (16.3\%)	-0.02
0	1,492 (40.5\%	205 (34.3\%)	0.13	1,317 (44.8\%	193 (44.8\%)	0.00	1,338 (23.0\%	195 (20.7\%)	0.06	4,147 (33.3\%	593 (30.1\%)	0.07
1-2	1,101 (29.9\%)	175 (29.3\%)	0.01	744 (25.3\%)	115 (26.7\%)	-0.03	1,920 (32.9\%	325 (34.5\%)	-0.03	3,765 (30.2\%	615 (31.2\%)	-0.02
3-5	665 (18.1\%)	146 (24.5\%)	-0.16	536 (18.2\%)	76 (17.6\%)	0.02	1,567 (26.9\%	254 (27.0\%)	0.00	2,768 (22.2\%	476 (24.2\%)	-0.05
$>=6$	423 (11.5\%)	71 (11.9\%)	-0.01	341 (11.6\%)	47 (10.9\%)	0.02	1,004 (17.2\%	167 (17.7\%)	-0.01	1,768 (14.2\%	285 (14.5\%)	-0.01
Colonoscopy; n (\%)	412 (11.2\%)	69 (11.6\%)	-0.01	330 (11.2\%)	43 (10.0\%)	0.04	632 (10.8\%)	109 (11.6\%)	-0.03	1,374 (11.0\%	221 (11.2\%)	-0.01
Endocrinologist Visit; n (\%)	178 (4.8\%)	20 (3.4\%)	0.07	$83(2.8 \%)$	15 (3.5\%)	-0.04	563 (9.7\%)	93 (9.9\%)	-0.01	824 (6.6\%)	128 (6.5\%)	0.00
Fecal occult blood (FOB) test; n (\%)	300 (8.1\%)	52 (8.7\%)	-0.02	127 (4.3\%)	20 (4.6\%)	-0.01	401 (6.9\%)	64 (6.8\%)	0.00	828 (6.7\%)	136 (6.9\%)	-0.01
Flu vaccine; n (\%)	1,333 (36.2\%	218 (36.5\%)	-0.01	588 (20.0\%)	82 (19.0\%)	0.03	3,495 (60.0\%	617 (65.6\%)	-0.12	5,416 (43.5\%	917 (46.6\%)	-0.06
Glucose test strips; n (\%)	86 (2.3\%)	14 (2.3\%)	0.00	45 (1.5\%)	8 (1.9\%)	-0.03	357 (6.1\%)	63 (6.7\%)	-0.02	488 (3.9\%)	85 (4.3\%)	-0.02
Glucosetests; n (\%)	578 (15.7\%)	101 (16.9\%)	-0.03	336 (11.4\%)	59 (13.7\%)	-0.07	1,837 (31.5\%	276 (29.3\%)	0.05	2,751 (22.1\%	436 (22.1\%)	0.00
HbA1c tests ; n (\%)	1,554 (42.2\%,	280 (46.9\%)	-0.09	570 (19.4\%)	97 (22.5\%)	-0.08	4,510 (77.4\%	724 (76.9\%)	0.01	6,634 (53.3\%	1,101 (55.9\%	-0.05
Imaging/Diagnostics Used in Prostate Cancer												
0	1,717 (46.6\%)	197 (33.0\%)	0.28	1,366 (46.5\%	132 (30.6\%)	0.33	2,879 (49.4\%	355 (37.7\%)	0.24	5,962 (47.9\%	684 (34.7\%)	0.27
1-3	1,620 (44.0\%)	323 (54.1\%)	-0.20	1,243 (42.3\%	217 (50.3\%)	-0.16	2,248 (38.6\%	438 (46.5\%)	-0.16	5,111 (41.1\%	978 (49.7\%)	-0.17
>=4	344 (9.3\%)	77 (12.9\%)	-0.11	329 (11.2\%)	82 (19.0\%)	-0.22	702 (12.0\%)	148 (15.7\%)	-0.11	1,375 (11.0\%	307 (15.6\%)	-0.14
Internal Medicine/Family Medicine Visits; n (\%)	3,489 (94.8\%	568 (95.1\%)	-0.01	2,513 (85.5\%	377 (87.5\%)	-0.06	5,219 (89.5\%	838 (89.1\%)	0.01	11,221 (90.1)	1,783 (90.6\%	-0.02
Lipid tests; n (\%)	2,689 (73.1\%)	439 (73.5\%)	-0.01	1,011 (34.4\%	152 (35.3\%)	-0.02	5,013 (86.0\%	789 (83.8\%)	0.06	8,713 (70.0\%	1,380 (70.1\%	0.00
Microalbuminuria tests; n (\%)	921 (25.0\%)	150 (25.1\%)	0.00	404 (13.8\%)	72 (16.7\%)	-0.08	2,428 (41.7\%	425 (45.2\%)	-0.07	3,753 (30.1\%	647 (32.9\%)	-0.06
Number of different/distinct medication prescriptions												
...mean (sd)	8.01 (6.17)	8.27 (6.02)	-0.04	10.22 (5.52)	10.55 (5.10)	-0.06	11.92 (5.24)	11.69 (4.90)	0.05	10.36 (5.60)	10.40 (5.31)	-0.01
...median [IQR]	$8.00[3.00,12$	$8.00[4.00,12$	0.00	$9.00[6.00,13$	10.00 [7.00, 1	-0.19	11.00 [8.00,	11.00 [8.00, 1	0.00	9.64 (6.20)	9.87 (5.91)	-0.04
...mean (sd)	12.48 (6.80)	12.44 (6.38)	0.01	12.31 (7.03)	12.46 (6.32)	-0.02	14.62 (7.67)	14.29 (6.95)	0.05	13.44 (7.27)	13.33 (6.65)	0.02
...median [IQR]	11.00 [8.00, 1	11.00 [8.00, 15		11.00 [8.00, 1	11.00 [8.00, 1	0.00	$13.00[9.00,1$	$13.00[9.00,1$	0.00	11.94 (8.02)	11.96 (7.38)	0.00
Oncology Specialist Visit												
0	2,571 (69.8\%	409 (68.5\%)	0.03	2,668 (90.8\%	390 (90.5\%)	0.01	3,246 (55.7\%	552 (58.7\%)	-0.06	8,485 (68.2\%	1,351 (68.6\%	-0.01
1-5	455 (12.4\%)	77 (12.9\%)	-0.02	112 (3.8\%)	16 (3.7\%)	0.01	1,059 (18.2\%	185 (19.7\%)	-0.04	1,626 (13.1\%	278 (14.1\%)	-0.03
>=6	655 (17.8\%)	111 (18.6\%)	-0.02	158 (5.4\%)	25 (5.8\%)	-0.02	1,524 (26.1\%	204 (21.7\%)	0.10	2,337 (18.8\%	340 (17.3\%)	0.04
Pneumonia vaccine; $\mathrm{n}(\%)$	958 (26.0\%)	183 (30.7\%)	-0.10	276 (9.4\%)	49 (11.4\%)	-0.07	1,445 (24.8\%	281 (29.9\%)	-0.11	2,679 (21.5\%	513 (26.1\%)	-0.11
Prostate cancer prognosticators												
Radiation Therapies Used in Prostate Cancer; n (\%)	18 (0.5\%)	1 (0.2\%)	0.05	7 (0.2\%)	0 (0.0\%)	0.06	28 (0.5\%)	>11	-0.03	53 (0.4\%)	8 (0.4\%)	0.00
...mean (sd)	2.42 (1.78)	2.40 (1.74)	0.01	1.19 (3.39)	1.00 (1.51)	0.12	2.59 (1.58)	2.41 (1.43)	0.12	2.21 (2.20)	2.10 (1.55)	0.06
...median [IQR]	$2.00[1.00,3$.	$2.00[1.00,3$.	0.00	$0.00[0.00,2$.	$0.00[0.00,2$.	0.00	$2.00[2.00,3$.	$2.00[1.00,3$.	-1.33	1.53 (2.74)	1.56 (1.73)	-0.01
Prostatectomy; n (\%)	146 (4.0\%)	18 (3.0\%)	0.05	117 (4.0\%)	11 (2.6\%)	0.08	132 (2.3\%)	22 (2.3\%)	0.00	395 (3.2\%)	51 (2.6\%)	0.04
Prostate exam for DRE												
...mean (sd)	1.19 (3.27)	1.18 (2.90)	0.00	0.31 (1.48)	0.31 (1.42)	0.17	0.38 (0.81)	0.42 (0.82)	-0.05			
...median [IQR]	0.00 [0.00, 0 .	0.00 [0.00, 0.	0.00	0.00 [0.00, 0 .	0.00 [0.00, 0.	0.17	0.00 [0.00, 0 .	$0.00[0.00,1$.	0.00			
Prostate Cancer Comorbidity Index (PCCI)												
\ldots..mean (sd)	35.65 (6.07)	36.68 (6.34)	-0.17	33.34 (4.90)	34.65 (5.37)	-0.02	36.36 (6.00)	36.99 (6.37)	-0.10	35.44 (5.78)	36.38 (6.16)	-0.16
...median [IQR]	35.00 [31.00,	36.00 [32.00,	0.00	33.00 [30.00,	34.00 [30.00,	-0.02	35.00 [32.00,	36.00 [33.00,	-0.16	34.53 (6.24)	35.56 (6.74)	-0.16
Medications												
ACE inhibitors; n (\%)	1,263 (34.3\%)	190 (31.8\%)	0.05	1,161 (39.5\%	181(42.0\%)	-0.05	2,704 (46.4\%	461 (49.0\%)	-0.05	5,128 (41.2\%	832 (42.3\%)	-0.02

Table 1: Unmatched

Anti-arrhythmics; n (\%)	54 (1.5\%)	12 (2.0\%)	-0.04	55 (1.9\%)	5 (1.2\%)	0.06	136 (2.3\%)	20 (2.1\%)	0.01	245 (2.0\%)	37 (1.9\%)	0.01
Anti-diabetic Drugs; n (\%)	747 (20.3\%)	131 (21.9\%)	-0.04	752 (25.6\%)	118 (27.4\%)	-0.04	3,789 (65.0\%	582 (61.8\%)	0.07	5,288 (42.5\%	831 (42.2\%)	0.01
Chemotherapies Used in Prostate Cancer; n (\%)	18 (0.5\%)	1 (0.2\%)	0.05	10 (0.3\%)	0 (0.0\%)	0.08	28 (0.5\%)	>11	-0.03	56 (0.4\%)	8 (0.4\%)	0.00
Metformin; n (\%)	486 (13.2\%)	87 (14.6\%)	-0.04	388 (13.2\%)	68 (15.8\%)	-0.07	2,144 (36.8\%	346 (36.8\%)	0.00	3,018 (24.2\%	501 (25.4\%)	-0.03
Use of anticonvulsants; n (\%)	354 (9.6\%)	52 (8.7\%)	0.03	293 (10.0\%)	44 (10.2\%)	-0.01	901 (15.5\%)	138 (14.7\%)	0.02	1,548 (12.4\%	234 (11.9\%)	0.02
Use of antidepressants; n (\%)	426 (11.6\%)	70 (11.7\%)	0.00	379 (12.9\%)	58 (13.5\%)	-0.02	1,015 (17.4\%	144 (15.3\%)	0.06	1,820 (14.6\%	272 (13.8\%)	0.02
Use of Antiparkinsonian Meds; n (\%)	51 (1.4\%)	13 (2.2\%)	-0.06	69 (2.3\%)	7 (1.6\%)	0.05	207 (3.6\%)	18 (1.9\%)	0.10	327 (2.6\%)	38 (1.9\%)	0.05
Use of antiplatelet agents; n (\%)	985 (26.8\%)	161 (27.0\%)	0.00	1,135 (38.6\%	162 (37.6\%)	0.02	2,276 (39.0\%	356 (37.8\%)	0.02	4,396 (35.3\%	679 (34.5\%)	0.02
Use of antipsychotics; n (\%)	25 (0.7\%)	7 (1.2\%)	-0.05	35 (1.2\%)	8 (1.9\%)	-0.06	110 (1.9\%)	>11	0.08	170 (1.4\%)	24 (1.2\%)	0.02
Use of anxiolytics/hypnotics; n (\%)	137 (3.7\%)	25 (4.2\%)	-0.03	176 (6.0\%)	25 (5.8\%)	0.01	428 (7.3\%)	62 (6.6\%)	0.03	741 (6.0\%)	112 (5.7\%)	0.01
Use of ARBs; n (\%)	573 (15.6\%)	100 (16.8\%)	-0.03	627 (21.3\%)	88 (20.4\%)	0.02	1,403 (24.1\%	230 (24.4\%)	-0.01	2,603 (20.9\%	418 (21.2\%)	-0.01
Use of Benzos; n (\%)	355 (9.6\%)	60 (10.1\%)	-0.02	409 (13.9\%)	45 (10.4\%)	0.11	594 (10.2\%)	108 (11.5\%)	-0.04	1,358 (10.9\%	213 (10.8\%)	0.00
Use of beta blockers; n (\%)	1,806 (49.1\%)	305 (51.1\%)	-0.04	1,879 (64.0\%	286 (66.4\%)	-0.05	3,987 (68.4\%	689 (73.2\%)	-0.11	7,672 (61.6\%	1,280 (65.0\%	-0.07
Use of bisphosphonate; $\mathrm{n}(\%)$	105 (2.9\%)	9 (1.5\%)	0.10	82 (2.8\%)	5 (1.2\%)	0.11	175 (3.0\%)	18 (1.9\%)	0.07	362 (2.9\%)	32 (1.6\%)	0.09
Use of calcium channel blockers; n (\%)	837 (22.7\%)	154 (25.8\%)	-0.07	889 (30.3\%)	113 (26.2\%)	0.09	1,955 (33.5\%	294 (31.2\%)	0.05	3,681 (29.6\%	561 (28.5\%)	0.02
Use of COPD/asthma meds; n (\%)	468 (12.7\%)	82 (13.7\%)	-0.03	513 (17.5\%)	89 (20.6\%)	-0.08	1,128 (19.4\%	166 (17.6\%)	0.05	2,109 (16.9\%	337 (17.1\%)	-0.01
Use of Dementia Meds; n (\%)	30 (0.8\%)	10 (1.7\%)	-0.08	63 (2.1\%)	8 (1.9\%)	0.01	153 (2.6\%)	19 (2.0\%)	0.04	246 (2.0\%)	37 (1.9\%)	0.01
Use of digoxin; n (\%)	53 (1.4\%)	12 (2.0\%)	-0.05	93 (3.2\%)	12 (2.8\%)	0.02	211 (3.6\%)	43 (4.6\%)	-0.05	357 (2.9\%)	67 (3.4\%)	-0.03
Use of heparin and other low-molecular weight heparins; n (\%)	40 (1.1\%)	8 (1.3\%)	-0.02	62 (2.1\%)	7 (1.6\%)	0.04	107 (1.8\%)	25 (2.7\%)	-0.06	209 (1.7\%)	40 (2.0\%)	-0.02
Use of Insulin; n (\%)	214 (5.8\%)	$34(5.7 \%)$	0.00	223 (7.6\%)	34 (7.9\%)	-0.01	1,154 (19.8\%	186 (19.8\%)	0.00	1,591 (12.8\%	254 (12.9\%)	0.00
Use of Lithium; n (\%)	6 (0.2\%)	0 (0.0\%)	0.06	2 (0.1\%)	0 (0.0\%)	0.04	>11	>11	-0.03	14 (0.1\%)	2 (0.1\%)	0.00
Use of Loop Diuretics; n (\%)	338 (9.2\%)	59 (9.9\%)	-0.02	395 (13.4\%)	61 (14.2\%)	-0.02	1,199 (20.6\%	197 (20.9\%)	-0.01	1,932 (15.5\%	317 (16.1\%)	-0.02
Use of nitrates; n (\%)	524 (14.2\%)	75 (12.6\%)	0.05	630 (21.4\%)	82 (19.0\%)	0.06	1,348(23.1\%	205 (21.8\%)	0.03	2,502 (20.1\%	362 (18.4\%)	0.04
Use of NSAIDs; n (\%)	405 (11.0\%)	74 (12.4\%)	-0.04	402 (13.7\%)	57 (13.2\%)	0.01	1,015 (17.4\%	132 (14.0\%)	0.09	1,822 (14.6\%	263 (13.4\%)	0.03
Use of opioids; n (\%)	1,034 (28.1\%)	173 (29.0\%)	-0.02	1,087 (37.0\%	171 (39.7\%)	-0.06	2,338 (40.1\%	369 (39.2\%)	0.02	4,459 (35.8\%	713 (36.2\%)	-0.01
Use of oral anticoagulants (Dabigatran, Rivaroxaban, Apixaban, Warfarin); n (\%)	326 (8.9\%)	52 (8.7\%)	0.01	350 (11.9\%)	53 (12.3\%)	-0.01	822 (14.1\%)	147 (15.6\%)	-0.04	1,498 (12.0\%	252 (12.8\%)	-0.02
Use of oral corticosteroids; n (\%)	700 (19.0\%)	134 (22.4\%)	-0.08	710 (24.2\%)	103 (23.9\%)	0.01	1,538 (26.4\%	252 (26.8\%)	-0.01	2,948 (23.7\%	489 (24.8\%)	-0.03
Use of other antiplatelet agents; n (\%)	33 (0.9\%)	$8(1.3 \%)$	-0.04	50 (1.7\%)	3 (0.7\%)	0.09	94 (1.6\%)	>11	0.05	177 (1.4\%)	20 (1.0\%)	0.04
Use of other diuretics; n (\%)	100 (2.7\%)	16 (2.7\%)	0.00	122 (4.2\%)	22 (5.1\%)	-0.04	289 (5.0\%)	52 (5.5\%)	-0.02	511 (4.1\%)	90 (4.6\%)	-0.02
Use of other hypertension drugs; n (\%)	274 (7.4\%)	49 (8.2\%)	-0.03	266 (9.1\%)	32 (7.4\%)	0.06	661 (11.3\%)	91 (9.7\%)	0.05	1,201 (9.6\%)	172 (8.7\%)	0.03
Use of other lipid-lowering drugs; n (\%)	329 (8.9\%)	45 (7.5\%)	0.05	477 (16.2\%)	55 (12.8\%)	0.10	910 (15.6\%)	135 (14.3\%)	0.04	1,716 (13.8\%	235 (11.9\%)	0.06
Use of statins; n (\%)	2,231 (60.6\%	374 (62.6\%)	-0.04	2,230 (75.9\%	342 (79.4\%)	-0.08	4,610 (79.1\%	766 (81.4\%)	-0.06	9,071 (72.9\%	1,482 (75.3\%	-0.05
Use of thiazide; n (\%)	321(8.7\%)	46 (7.7\%)	0.04	315 (10.7\%)	45 (10.4\%)	0.01	730 (12.5\%)	113 (12.0\%)	0.02	1,366 (11.0\%	204 (10.4\%)	0.02

Table 1: Matched

	Optum MATCHED Marketscan							Medicare				Pooled																		
Variable																														
Number of patients	546	546		415	415			926	926			euprolide	1,887	1,887	S. iff															
Year of Cohort Entr Date																														
.2008-2009; ${ }^{\text {(\%) }}$	-	-		-	-			-																						
$\cdots 2010$; ${ }^{\text {(\%) }}$	${ }^{18(3.3 \%)}$	$20(3.7 \%)$	-0.02	28(6.7\%)	24 (5.8\%)		0.04	446 (5.0\%)	37(4.0\%)		0.05	92(4.9\%)		814.3\%)	0.03															
‥2011; ${ }^{\text {(\%) }}$	$26(4.8 \%)$	23(4.2\%)	0.03	42(10.1\%)	45 (10.8\%)			$2535.7 \%)$	49 (5.3\%)		0.02	12116.4\%)		117(6.2\%)																
- 2012 ; ${ }^{\text {n \% }}$)	${ }^{42(7.7 \%)}$	40 (7.3\%)	0.02	44 (10.6\%)	50 (12.0\%)			$492(9.9 \%)$	69(7.5\%)		0.09	178(9.4\%)		$159(8.48)$																
-2013; ${ }^{\text {(\%) }}$	50(9, 2\%)	$50(9.2 \%)$	0.00	61(14.7\%)	56 (13.5\%)		0.03	3116(12.5\%)	121(13.1\%)		-0.02	$2227(12.0 \%)$		227(12.0\%)																
-2014; ${ }^{\text {(\%) }}$	3997.1\%)	35(6.4\%)	0.03	42(10.1\%)	46(11.1\%)		0.03	(143(15.4\%)	170 (18.48)		-0.08	(224(11.9\%)		251(13.3\%)	0.04															
	${ }^{39(7.18)}$	$42(7.78)$	-0.02	58 (14.0\%)	60(14.5\%)			1182 (19.7\%)	171(18.58)					273(14.5\%)																
- $2016 ; \mathrm{n}$ (\%)	67(12.3\%)	$62(1.4 \%)$	0.03	63 (15.2\%)	63(15.2\%)		0.00	130(14.0\%)	$144(15.6 \%)$		-0.05	$5260(13.8 \%)$		269 (14.3\%)	0.01															
-2017: n (\%)	$65(1.1 .9 \%)$	74(13.6\%)	-0.05	53(12.8\%)	47(11.3\%)		0.05	5164 (17.7\%)	165 (17.8\%)		0.00	282 (14.9\%)		286(15.2\%)	0.01															
$\ldots 2018 ; \mathrm{n}$ (\%)	72(113.2\%)	76(13.9\%)	-0.02	224(5.8\%)	24 (5.8\%)		0.00																							
.-2019; ${ }^{\text {(\%) }}$	$89(16.3 \%)$	${ }^{91(116.7 \%)}$	-0.01																											
-2020; ${ }^{\text {n }}$ (\%)	39(7.1\%)	33(6.0\%)	0.04	4 -	-			-	-																					
Age																														
$\cdots \mathrm{mean}$ (sd)	76.19(6.92)	${ }^{76.047,59)}$	0.02	74.65 (9, 34)	${ }^{74.49}(9,17)$		0.02	276.99 (6.56)	77.02(6.47)		0.00	76.24(6,74)		${ }^{76.18(6,87)}$																
\%median [IQR]	77.00[72.00, 81.00]	76.00[71.00, 82.00]	0.14	$475.00067 .00,88.00]$	75.00 [68.00, 82.00]		0.00	7 $76.000772 .00,82.00]$	77.00[72.00,82.00]		-0.15	[76.07 (7.36)		76.27(7.46)	0.03															
$\frac{\text { Region }}{\text { (1-Northeast: } \mathrm{n} \text { (\%) }}$	$88(15.8 \%)$	$85(15.6 \%)$	0.01	$194(22.7 \%)$	92(22.2\%)			194421.0\%)	189 (20.4\%)			374(19.8\%)		366 (19.4\%)	0.01															
$\ldots 2$ - North Central; n (\%)	$131(24.0 \%)$	$131{ }^{1 / 24.0 \%)}$	0.00	1145 (34.9\%)	$144(34.7 \%)$			2088(22.5\%)	223 (24.1\%)		-0.04	4884(25.6\%)		498 (26.4\%)	0.02															
$\cdots-$ - South; ${ }^{\text {(\%) }}$ (\%)	${ }^{2090938.3 .3 \%)}$	${ }^{2055(37.5 \%)}$	0.02	2139(33.5\%)	${ }^{130(31.3 \%)}$			5 ${ }^{373} 3140.3 \%$ \%	${ }^{3688(39.77 \%)}$			(721(38.2\%)		${ }^{703(37.3 \%)}$																
.-White: $(\%)$	$437(80.0 \%)$	$438(80.2 \%)$	-0.01	1 -	-			796(86.0\%)	$803(86.7 \%)$		-0.02	11,233(6, 3\%)		1,241(65.8\%)	0.01															
..asian; n (\%)	8 (1.5\%)	112.0\%)	-0.04					${ }^{11}$				(13(0.7\%)		19(1.0\%)																
.Black; n (\%)	66 (12.1\%)	61(11.2\%)	0.03					93 (10.0\%)	85 (9.2\%)			31599(8.4\%)		$146(7.7 \%)$																
Hispanic; (\%)	$35(6.4 \%)$	36(6.6\%)	-0.01					$11(1.2 \%)$	${ }^{41}$		0.01	[6 (2.48)		$46(2.4 \%)$																
- North American Nativen n (\%)											-0.02	${ }^{3} 3(0.3 \%)$		${ }^{4(0.4 \%)}$																
...other; $\mathrm{n}^{(\%)}$	-	-		-	-			18(1.9\%)	$16(1.7 \%)$		0.02	18(1.9\%)		16 (1.7\%)	0.02															
Cardiouscular event rognosticators																														
Acateor Old MM; n (\%)	20437.48)	${ }^{212(338.8 \%)}$	0.03	($397(23.48)$	$\frac{94(2, .7 \%)}{22[5.38)}$			(2 $357(38.6 \% \%)$	$\frac{348(37.6 \%)}{57(6,2 \%)}$		${ }_{0}^{0.02}$	(658 (34.9\%)		${ }_{\text {¢ }}^{654(34.7 \%)}$	0.00															
	${ }^{324(5.95 .4 \%)}$		$\stackrel{0.00}{0.0}$	(20 (4.8\%)	${ }^{22}$			(e) 1800 (6.5\%)				[123(5.977 (17\%)																		
Coronary Atherosclerosis; n (\%)	436(79.98)	432(79.1\%)	0.02	305 (73.5\%)	302(72.8\%)		0.02	2764(82.5\%)	$762(82.3 \%)$		0.01	1,505 (79.8\%)		1,496 (79.3\%)	0.01															
	30(5.5\%)	43(7.9\%)		40(9.6\%)	32(7.7\%)			$763(6.8 \%)$	70(7.6\%)		-0.03	133 (7.0\%)		$145(7.7 \%)$																
Diabetes with Complications; n (\%)	181 (33.2\%)	186 (34.1\%)		62 [14.9\%)	58 (14.0\%)		0.03	3 745 (80.5\%)	724(78.2\%)		0.06	¢ 9888 (52.4\%)		968 (51.3\%)	0.02															
Diabetes without Complications; (\%)	98(17.9\%)	116 (21.2\%)		149 (35.9\%)	${ }^{134} 3(32.3 \%)$			8340 (36.7\%)	351 (37.9\%)		-0.02	2587(31.1\%)		601(31.8\%)																
DVT; n (\%)	24(4.4\%)	${ }^{23(4.2 \%)}$	0.01	$17(1.7 \%)$	${ }^{(11.46)}$		0.02	245 (4.9\%)	42 (4.5\%)		0.02	276(4.0\%)		${ }^{71(3.8 \%)}$	0.01															
	${ }^{60} 70(11.0 \%)$	$\frac{60}{77(11.0 \%)}$	${ }_{0}^{0.00}$	(130 (7.2\%)	${ }^{28}$		0.02 -0.02		${ }^{135(14.6 \%)}$		$\frac{0.00}{0.00}$	(226(12.0\%)		$\frac{223(11.8 \%)}{240(12.7 \%)}$	0.01 0.00															
Footulcer; n (\%)	$12(12.2 \%)$	18 (13.3\%)		$79(2.2 \%)$	10 (2.46)			148(5.2\%)	48 (5.2\%)			6993.7\%)		$76(4.0 \%)$																
Hyperipidemia; n (\%)	459 (84.1\%)	467 (85.5\%)	-0.04	4 300 (72.3\%)	290(69.9\%)		0.05	5 837 (90.4\%)	843 (91.0\%)		-0.02	1,5966(84.6\%)		1,600 (84.8\%)	0.01															
Hypertension; ${ }^{\text {(\%) }}$)	477 (87.48)	479 (87.7\%)	-0.01	313(75.4\%)	318(76.6\%)		-0.03	3862 (93.1\%)	867 (93.6\%)			1,652 (87.5\%)		1,664 (88.2\%)																
Intracranial or Retroperitoneal Hemorrhage; n (\%)	7 (1.3\%)	$5(0.9 \%)$	0.04	4(1.0\%)	$3(0.78)$		0.03	312(1.3\%)	17 (1.8\%)		-0.04	2 23 (1.2\%)		$25(1.3 \%)$	0.01															
Ischemic Heart Disease; n(\%)	461 (84.48)	457 (83.7\%)	0.02	325 (78.3\%)	319 (76.9\%)			395 (85.9\%)	791(85.4\%)		0.01	1,581(83.8\%)		1,567783.0\%)	0.02															
Ischemic stroke; (\%)	101 (18.5\%)	101(18.5\%)	0.00	077 (18.6\%)	76(18.3\%)		0.01	1228 (24.6\%)	${ }_{5}^{229(24.77 \%)}$		0.00	406(21.5\%)		406(21.5\%)																
	${ }^{21(3.8 \%)}$	27(4.9\%)	$\stackrel{-0.05}{0.04}$	$5{ }^{22(5.3 \%)}$	${ }^{18} 4$ (4.3\%)		0.005	$58517.068)$	${ }_{15 \text { 5 } 5 \text { (5.9\%) }}^{159}$		${ }^{0.04}$	108 (5.7\%)																		
Other Disorderso ff hyroid Gland; n (\%)	${ }^{12(22.2 \%)}$	16(2.9\%)	-0.04	(16 (3.9\%)	${ }^{13(3.1 \%)}$		0.04	434(3,7\%)	38(4.1\%)		-0.02	262(3.3\%)		67(3.6\%)																
Overweight; n (\%)	$38(7.0 \%)$	$40(7.3 \%)$		$1.10(2.4 \%)$	${ }^{13(3) .1 \%)}$			$441(4.4 \%)$	42(4.5\%)			899(4.7\%)		$95(5.0 \%)$																
PE; त (\%)	$10(1.8 \%)$	8(1.5\%)		20.5\%)	2(0.5\%)				1411.5\%)			22 (1.2\%)		24(1.3\%)	0.01															
Peripheral Vascular Disease, n (\%)	191 (135.0\%)	185 (133.9\%)		210996.3\%)	11126.7\%)			1284(30.7\%)	${ }^{2722(29.4 .4 \%)}$																					
	${ }^{62(11.4 \%)}$		$\stackrel{-0.07}{0.01}$		${ }^{34(8,2 \%)}$			($\frac{112(12.1 \%)}{11}$			2207(11.0\%)		${ }_{2}^{221(11.17 \%)}$																
TA; ${ }^{\text {n }}$ (\%)	${ }^{19(3.5 \%)}$	19(3.5\%)	0.00	088(1.9\%)	$10(2.4 \%$)		${ }^{-0.03}$	3 35 (3.8\%)	36(3.9\%)		$\stackrel{-01}{-0}$	(1) 62 (3.3\%)		65 (3.4\%)	${ }_{0}^{0.01}$															
General Health/Moratalip Prognosticators																														
Abnormal liver function; $(\%)$	57 (10.4\%)	${ }^{53(9,7 \%)}$	0.02	231(7.5\%)	${ }^{27(6.5 \%)}$		0.04	4 103(11.1\%)	97 (10.5\%)			191(10.18)		$177(9.46)$	${ }^{0.02}$															
Alcohol Abusel/eependence; (\%\%)	$\left.{ }^{19} 18.587\right)$	$\left.{ }^{15} 12.78 \%\right)$	0.05	5 51.28 .26$)$			0.00	(1) $18.1 .9 \%)$	190.2.18)			142(2,2\%)																		
Anemias (Sickle-Cell, 66 GPD Deficiencr, Nutrient Deficiencr): n (\%)	${ }^{129923.6 \%)}$	$\frac{141(25.8 \%)}{21(388)}$	${ }^{-0.05}$	$58(19.5 \%)$	${ }^{681(16.48)}$		0.08	(282 (30.5\%)	${ }^{288(30.2 \%)}$			(492[26.1\%)		${ }_{\text {l }}^{\text {489 (2,.9\%) }}$																
Astma; ${ }^{\text {A }}$ (\%)	${ }_{\text {2 }}^{2374.28 \%)}$		0.02	21(5.18\%)	${ }^{21}$			(60 (6.56\%)				(1047 (5.5\%)		${ }^{1000(5.3 \%)} 4$																
Delirium; $(\%)$	15 (2.7\%)	$14(2.6 \%)$	0.01	${ }^{4(1.0 \%)}$	4(1.0\%)		0.00	034(3.7\%)	34(3.7\%)		0.00	53(2.8\%)		$52(2.88 \%)$																
Dementia; n (\%)	17(3.1\%)	$18(3.3 \%)$	-0.01	112.7\%)	$9(2.28)$		0.03	324(2.6\%)	30(3.2\%)		-0.04	52(2.8\%)		$57(3.0 \%)$	0.01															
Depression; i (\%)	$\left.{ }^{49} 99.0 \%\right)$	45 $8.8 .2 \%)$	0.03	23(5.5\%)	$22(5.3 \%)$		0.01	$172(7.8 \%)$	${ }^{7618.2 \%)}$		-0.01	1447(7.6\%)		143 (7.6\%)	0.00															
$\frac{\text { Falls; } \mathrm{n} \text { (\%) }}{\text { Fratures }}$ (\%)	${ }^{31}$	${ }^{38}$	$\stackrel{-0.05}{0.05}$	102(2.46\%)				0, $60(16.5 \%)$				101 (5.4\%)		${ }^{1199(6.3 \%)}$																
HVIAILS;	0(0.0\%)	${ }^{2(0.44)}$		0(0.0\%)	${ }^{\text {O }}$	N/A		0(0.0\%)	${ }^{411}$		-0.08	O800.0\%)		$\left.{ }_{\text {OL }} 050.3 \%\right)$	0.08															
Organ Transplant: n (\%)	10.0.2)	30.5\%)		54(1.0\%)	4 41.0\%)		0.00	$\square^{1} 11$	${ }^{11}$			820.0.4\%)		$110.06 \%)$	${ }_{0}^{0.03}$															
osteoporosisis n (\%)	${ }^{29} 5(5.3 \%)$	23(4.2\%)		5 14(3.4\%)	${ }^{12}(2.98 \%)$			348(5.2\%)	54 (5.8\%)			3914.8\%)		89 4.7% \%																
Peptic Ulicer Disasesen n (\%)	142(26.0\%)	141 (25.8\%)		0 73 (17.6\%)	72(17.3\%)			$1249(26.9 \%)$	254(27.4\%)			1464 (24.6\%)		4677 (24.7\%)																
Preumonia; (\%)	${ }^{1918.5 \%)}$	${ }^{15(2,7 \%)^{2}}$	0.05	5 1112.7\%)	${ }^{1513.6 \% \%)}$		${ }^{-0.05}$	S 18 (1.9\%\%)	$\frac{19}{192.18 .16)}$		-0.01	- $482(2.5 \%)$		49(12.6\%)	${ }^{0.001}$															
		$\underbrace{127 \%}_{1727(23.3 \%)}$		256[13.5\%)	${ }_{\text {12 }}^{56(12.5 \%)}$			(346(26.6\%)	${ }_{4949(15.36 \%)}^{24 \%}$					${ }_{\text {l }}^{429(2.12 .7 \%)}$																
Sleep Appea; n (\%)	46(8.4\%)	$52(9.5 \%)$		442 (10.1\%)	43(10.4\%)		-0.01	196 (10.4\%)	106 (11.4\%)		-0.03	184(9.8\%)		201(10.7\%)	${ }_{0} 0.03$															
Sleep Disorder, n (\%)	27(4.9\%)	2955.3\%)		226(6.3\%)	389.9\%)			$182(8.9 \%)$	$101(10.9 \%)$		-0.07	1135 (7.2\%)		1688 (8.9\%)																
Bone mineral density; ($(\%)$	${ }^{23}(4.28 \%)$	20(3.7\%)		(11(2.7\%)	$9(2.28)$		0.03	341(4.48\%)	41(4.4\%)		0.00	755 (4.0\%)		70(3.7\%)	${ }_{0}^{0.02}$															
BuNtests, (\%)	82(15.0\%)	82 (15.0\%)	0.00	55 (13.3\%)	45 (10.8\%)		0.08	181(19.5\%)	183 (19.8\%)		-0.01	318 (16.9\%)		310(16.4\%)	0.01															
Cardiologist vist	$203(37.28)$	189 (34.6\%)	0.05	5 181(43.6\%)	187(45.1\%)		0.03	[300(21.6\%)	194(21.0\%)		0.01	584(30.9\%)		$570(30.2 \%)$	0.02															
1-2	160 (29.3\%)	164 (30.0\%)		2114427.5\%)	108 (26.0\%)			${ }^{3} 336$ (36.3\%)	320 (34.6\%)		0.04	6410(32.3\%)		$592(31.4 \times 9)$	0.02															
3-5	132 (24.2\%)	131 (24.0\%)		7 7 (18.1\%)	75 (18.1\%)		0.00	241[26.0\%)	${ }^{249(26.9 \%)}$			2488 [23.7\%)		${ }^{455(22.1 \%)}$																
隹 $=1$	$\frac{519.3 \%)}{67(12.3 \%)}$	$\frac{62}{65(11.49 \%)}$		7 $144(10.8$ (10.6\%)	${ }^{45(11.8 \%)} 4$			(19) 14.16 .18$)$	$\frac{163(17.6 \%)}{108(11.7 \%)}$		$\stackrel{-0.04}{-0.06}$			$\frac{270(14.3 \%)}{214(11.3 \%)}$	004															
Endocrinologist Visist; n (\%)	17(3.1\%)	19(3.5\%)		213(3.1\%)	15 (3.6\%)			3700(7.6\%)	90(9.97\%)		-0.07	(100(5.3\%)		$124(6.6 \%)$																
	[53(9.7\%)	[47 (8.6\%)		416 (3.9\%)	19 (4.6\%)		0.03	[32(6.7\%)	(64 (6.9\%)		-0.01	131(6.9\%)		130(6.9\%)	0.00															

Table 1: Matched

Fluvacine; n (\%)	222 (40.7\%)	204(37.48)		84(20.2\%)	${ }^{79(19.0 \%)}$		(5999 (64.7\%)	605 (65.3\%)	-0.01	1905 48.0%)	${ }^{888(47.1 \%)}$	0.02
Glucose teststrips:n (\%)	$\frac{61.1 .19)}{70136}$	$\frac{1212.2 \%)}{12(126)}$		(9) $11.98 \%)$	${ }^{8(1.96)}$		(1) $596.48 \%)$	${ }^{6376.8 \%)}$		73 (3.9\%)	${ }^{8314.48 \%)}$	${ }^{0.03}$
Glucosetests; n (\%)	74(13.6\%)	$91(16.78 \%$		973(17.6\%)	54(13.0\%)		3268(28.9\%)	271129.3\%)		1415 22.0%)	416 (22.0\%)	0.00
	7(32.48)	181(33.2\%)	-0.02	2128(30.8\%)	132(11.8\%)	.0.02	$2{ }^{332(35.9 \%)}$	$348(37.6 \%)$	-0.04		661(35.0\%)	-0.03
${ }_{1}^{1-3}$	${ }^{304(555.7 \%)}$	${ }^{296}$ (54.2\%)	${ }^{0.03}$	(2009 (50.48)	${ }^{208(50.18)}$	0.01	1449 (48.5\%)	${ }^{433(466.8 \%)}$		(962 [51.0\%)	- 9387 (49.7\%)	
P-4	$\left.{ }^{65} 511.98 \%\right)$	${ }^{69} 9(12.6 \%)$	-0.02	278(18.8\%)	${ }^{75(18.1 \%)}$	0.02	22 145 (15.7\%)	${ }^{145}(15.78 \%)$		(288(15.3\%)	${ }^{289}$ (15.3\%)	${ }^{0.00}$
Interal Medicice/family Medicine Visits, n (\%)	$512(93.8 \%)$	521 (95.4\%)		, 368 (88.7\%)	364(87.7\%)	0.03	(3827(89.3\%)	824 (89.0\%)		1 1,707 (90.5\%)	1,709 (90.6\%)	
Lipid tests, n (\%)	${ }^{4077(74.5 \%)}$	${ }^{4022(73.6 \%)}$	0.02	(151(36.4\%)	${ }^{146(35.28)}$	0.03	3 770 (83.2\%	${ }^{775}$ (83.7\%)	${ }^{-0.01}$	$1,1.328(70.48)$	1,323 (70.1\%)	${ }^{0.01}$
..mean (sd) ..median [IQR]	${ }^{8.05(5.80)}$	$\left.{ }^{8.22[6.03)} 8.000 .00,12.00\right]$	-0.03 0.00 	310.77 (5.60)	$10.45(5.00)$ $10.0007 .00,13.00]$	${ }_{0}^{0.06}$	[11.6[4.86]	${ }^{11.67(4.91)} 11.00$	-0.01 0.00	10.40(4.84)	${ }^{10.40(4.79)}$	0.00 0.00
Office Visists (outpatien setting only	8.00[4.00, 12.00]	8.00[4.00, 12.00]		10.00 $1.00,14.00$			11.00 [8.00, 15.00]		0.00			
$\cdots \mathrm{mean}($ sol)	12.19(6.15)	12.35 (6.28)	${ }^{-0.03}$	(13.06 (6.91)	${ }^{12.48(6.36)}$	0.09	13.78 (6.87)	14.30(6.98)	-0.08	13.16 (5.92)	13.34(5.86)	-0.03
..median [IOR]	$11.00[8.00,15.00]$	11.00 [8.00, 15.00]	0.00	12.00[8.00, 16.00]	11.00 [8.00, 16.00]	0.15	5 13.000 [9.00, 17.00]	$13.0009 .00,18.00]$	0.00	12.20(6.68)	11.98 (6.65)	0.03
Oncology Specialist Visit												
	$370(67.8 \%)$	$370(67.8 \%)$	0.00	1368(88.7\%)	375 (90.4\%)	-0.06	(565 (61.0\%)	546 (59.0\%)	0.04	1,303(69.1\%)	1,291(68.4\%)	0.02
${ }^{1.5}$	${ }^{73(13.48)}$	${ }^{72(13,2 \%)}$		$1818(4.3 \%)$	${ }^{1613.9 \%)}$		2166(17.9\%)	${ }^{181(19.5 \%)}$	-0.04	257 (13.6\%)	$269(14.3 \%)$	-0.02
$\geq=6$	103 (18.9\%)	104(19.0\%)		(29 (7.0\%)	${ }^{24} 5(5.8 \%)$	0.05	195 (21.1\%)	$199(21.5 \%)$	-0.01	327 $177.3 \%)$	${ }^{327}(17.3 \%)$	0.0
												0.00
$\cdots \mathrm{mean}$ (sd)	$2.38(1.80)$	2.41(1.75)	-0.02	20.94(1.45)	$1.01(1.53)$	-0.05	52.33 (1.40)	2.40 (1.42)	-0.05	2.04(1.40)	$2.10(1.41)$	0.00
..median [IOR]	2.000 [1.00, 3.00]	2.00 [1.00, 3.25]		0.00 [0.00, 2.00]	0.000 [0.00, 2.00]	0.00	2.00[1.00, 3.00]	2.00 [1.00, 3.00]	0.00	1.56 (1.54)	1.56 (1.55)	0.00
Prostatectomy; C (\%)	$14(2.6 \%)$	${ }^{17}(3.1 \%)$	-0.03	136(3.9\%)	${ }^{11(2.7 \%)}$	-0.24	2 $22(2.48)$	21(2.3\%)	-0.22	252(2.8\%)	${ }^{49(2.6 \%)}$	0.01
Prostate exam for DRE												
\%mean (sd)	$\frac{1.27(3.29)}{0.00[0.00,0.00]}$	$\frac{1.17(2.84)}{0.000000 .000]}$	0.03 0.00	3 $0.333(1.34)$	${ }^{0.300(1.42)} 0$	${ }_{0}^{0.02}$	20 0.450 .0000000	${ }^{0.422[0.82)} 0$	0.03 0.00	30.66(1.94)	$0.001(1.72)$	0.00 0.00
Prostate Cancer Comortididy y Idex (PCCC)												
$\cdots \mathrm{mean}$ (sd)	${ }^{36.39(6.41)}$	${ }^{36.50(6,31)}$	${ }^{-0.02}$	234.75 (5.72)	${ }^{34.42(5.19)}$	0.06	[37.00(6.38)	${ }^{36.99(6.21)}$	0.00	36.33(5.55)	${ }^{36.28(5.35)}$	0.00
-median [IQR]	35.00 [32.00, 40.00]	35.00 [32.00, 40.00]	0.00	34.00] $33.00,38.00]$	34.00 [30.00, 37.00]	0.00	36.00[32.00, 41.00]	36.000 $33.00,41.00$]	0.00	35.27(6.25)	35.27 (6.03)	0.00
Medications												
Antiarrhythmicsin (\%)	${ }^{9} 1(1.6 \%)$	11(2.0\%)	-0.03	37(1.7\%)	5 (1.2\%)	0.04	411(1.2\%)	${ }^{19}$ (2.1\%)	-0.07	27(1.4\%)	35(1.9\%)	${ }_{-0.04}$
Anti-iliabetic rruss; n (\%)	116 (21.2\%)	114 (20.9\%)	0.01	1114(27.5\%)	$111(26.76)$	0.02	2582(62.9\%)	$574(62.0 \%)$		$812(43.0 \%)$	$799(42.3 \%)$	0.01
Chemotherapies Used in Prostate Cancer; n (\%)	30.5\%)	10.2\%)		10.2\%)	$00(0.0 \%)$	0.06	${ }^{411}$	41	-0.05	8(0.4\%)	$8{ }^{(0.4 \%)}$	0.00
Metformin; n (\%)	73(13.4\%)	77(14.1\%)		276(18.3\%)	62 [14.9\%)	0.09	(320 (34.6\%)	${ }^{341136.8 \%)}$	-0.05	(469 (24.9\%)	${ }^{480(25.4 \%)}$	-0.01
Use of anticonvulsants; $(\%)$	${ }^{46[8,4 \% \%)}$	${ }^{49} 9(9.0 \%)$		244(10.6\%)	${ }^{41(9.9 \%)}$	0.02	(128(13.8\%)	${ }^{135(14.6 \%)}$	-0.02	218(11.6\%)	${ }^{225(11.9 \%)}$	-0.01
Use of antidereessants; n (\%)	67(12.3\%)	64(11.7\%)		246(11.1\%)	$53(12.8 \%)$. 0.05	(144(15.6\%)	142 (15.3\%)	0.01	257 (13.6\%)	$259(13.7 \%)$	
Use of Antiparkinsonian Meds, n (\%)	${ }^{10(1.8 \%)}$	$100(1.8 \%)$	0.00	. $61.48 \%)$	${ }^{7(1.78)}$	-0.02	20(20.2\%)	18 (1.9\%)	0.02	26 (1.9\%)	${ }^{35(1.9 \%)}$	${ }^{0.00}$
Use of fantiplatele agents; n (\%)		${ }^{142(26.0 \%)}$	0.00 0.00	164(39.5\%)	${ }_{7}^{153}$	0.05	(358 (13.7\%)	${ }^{3488(137.6 \%)}$	$\stackrel{0.02}{0.01}$	(en ${ }^{605(13.12 \%)}$	${ }_{\text {che }}^{62(1.24 .28)}$	$\begin{array}{r}0.02 \\ -0.01 \\ \hline\end{array}$
Useof anxiolyticishyynotics; (\%)	2444.4\%)	23(4.2\%)	0.01	122(5.3\%)	${ }^{24} 5(5.8 \%)$	-0.02	257(6.2\%)	$\left.{ }_{62} 62.7 \%\right)$	-0.02	103(5.5\%)	$109(5.8 \%)$	
Use of ARBS; n (\%)	$81(14.8 \%)$	87(15.9\%)		390(21.7\%)	86 (20.7\%)	0.02	(248(26.8\%)	228 (24.6\%)	0.05	419(22.2\%)	$401(21.3 \%)$	0.02
Useof Benzos; n (\%)	$519.3 \%)$	54(9,9\%)		248(11.6\%)	$44(10.6 \%)$	0.03	3 98 (10.6\%)	$103(11.1 \%)$	-0.02	197(10.4\%)	$201(10.7 \%)$	-0.01
Use of beta blockers; n (\%)	273 (50.0\%)	278 (50.9\%)	-0.02	2288(64.6\%)	$276(66.5 \%)$	-0.04	4 668 (72.1\%)	675 (72.98)	-0.02	1,209(64.1\%)	${ }^{1,229(65.1 \%)}$	-0.02
Useof bisphosphonate; (\%)	$12(2.28 \%)$	${ }^{911.6 \%)}$	0.04	$411(2.7 \%)$	${ }^{5(1.2 \%)}$	0.11	118 (1.9\%)	18 (1.9\%)	0.00	41(2.2\%)	${ }^{32(1.7 \%)}$	0.04
Useof falcium chanel blockers C (\%)	$\frac{144(26.48)}{75(13.7 \%)}$	$\frac{144(26.4 \%)}{78(14.3 \%)}$	0.00	(110(26.5\%)	108(26.0\%)	${ }_{0}^{0.01}$	1288(31.1\%)	$\frac{291(31.48 \%)}{163(17.68)}$	$\stackrel{-0.01}{0.03}$	S $342(28.78 \%)$	${ }^{5433(28.8 \%)} 383(17.12)$	0.00 0.02
Useof dementia Meds; (\%)	$6(1.1 \%)$	8 (1.5\%)	-0.04	$411(2.78)$	8 (1.9\%)	0.05	$500(2.2 \%)$	${ }^{19(2.1 \%)}$	0.01	$177(2.0 \%)$	${ }^{35(1.9 \%)}$	0.0
Useofdigoxin; C (\%)	$9(1.6 \%)$	10 (1.8\%)	-0.02	211(2.7\%)	12(2.9\%)	-0.01	131(3,3\%)	${ }^{43(4.6 \%)}$	-0.07	51(2.7\%)	${ }^{65}(3,48)$	-0.04
Use of heparin and other low-molecular weight heparins; n (\%)	4(0.7\%)	6(1.1\%)		4, 9 (2.2\%)	$6(1.48)$	0.06	626(2,8\%)	$25(2.78)$		39(2.18)	$37(2.08)$	
Use of insulin; $\mathrm{n}(\%)$	${ }^{23(4.2 \%)}$	${ }^{28(5.18 \%)}$		4.30(7.2\%)	${ }^{32(7,7 \%)}$	-0.02	22174(18.8\%)	184(19.9\%)	-0.03	(227 (12.0\%)	${ }^{244(12.9 \%)}$	${ }^{-0.03}$
Useoflithium; $n(\%)$	$\frac{110.28)}{10502 \%)}$	[00.0.0\%)		600.0.0\%)	${ }^{0} \frac{0}{0(0.0 \%)}$	N/A	${ }^{411}$	${ }^{195}$	$\stackrel{-0.03}{-0.02}$	2 ${ }^{2(0.18)}$		${ }^{0.000}$
Use of Loop Diuretics: $(\%)$	${ }_{74(18.36 \%)}^{45 \%}$	${ }_{69}^{52(19.5 \%)}$		51 $51(12.3 \%)$	${ }_{\text {\% }}^{57(112.0 \% \%)}$	$\xrightarrow{-0.05}$	(10) $186(20.18 \%)$	${ }^{195(21.17 \%)}$	-0.02 -0.01 ${ }_{-0}$	346 (14.3\%)	${ }^{305(16.2 \%)} 3$ (18.4\%)	-0.04 0.00
Useof NSAISs; n (\%)	$71(13.0 \%)$	69(12.6\%)	0.01	162 (14.9\%)	$57(13.7 \%)$	0.03	(141(15.2\%)	$128(13.8 \%)$	0.04	274(14.5\%)	254(13.5\%)	0.03
Use of opioids: ; (\%)	169 (31.0\%)	159 (29.1\%)	0.04	41588 (38.1\%)	162 (39.0\%)	-0.02	2376(40.6\%)	361139.0\%)	0.03	(703 (37.3\%)	682(36.1\%)	
Use oforal antic oagulants (Oabigagtra, , ivaroxaban, Apixaban, Warfarin); n (\%)	46 (8.4\%)	${ }^{46[8.4 \%)}$	0.00	51(12.3\%)	51(12.3\%)	0.00	138(14.9\%)	147 (15.96)	-0.03	235 (12.5\%)	$244(12.96)$	-0.01
Useof oral corticosterids; ($(\%)$	${ }_{8}^{126(1.53 \%)}$	${ }_{\text {cke }}^{124(122.7 \%)}$	0.01 0.06	(110 (16.5\%)	${ }^{1000(24.18)}$	$\stackrel{0.06}{0.03}$	(1) 277 (19.99)	${ }^{24126.66 \%)}$	0.07 -0.06	(1) $517(27.2 \%)$	- $477(124.99 \%)$	0.05 0.00
Use of other diureticsin (\%)	16 (2.9\%)	16 12.9\%)	0.00	(2997.0\%)	${ }^{21}(5.1 \%)$	0.08	8 488 (5.2\%)	51(5.5\%)	-0.01	193(4.9\%)	88 (4.7\%)	
Use of ther hypertension drugs; n (\%)	$44(8.1 \%)$	47(8.6\%)	-0.02	228(6.7\%)	${ }^{31(7.5 \%)}$	-0.03	396(10.4\%)	90 (9.7\%)	0.02	1688 (8.9\%)	168 (8.9\%)	0.00
Use ofother lipid-lowering druss n (\%)	${ }^{37(6,88 \%)}$	${ }^{417(75 \%)}$	${ }^{-0.03}$	3 45 (11.0\%)	${ }^{51}$	${ }^{-0.05}$	(131(14.1\%)	${ }^{132(14.3 \%)}$	-0.01	213(11.3\%)	${ }^{224(11.9 \%)}$	${ }^{-0.02}$
Seseothiaidee N(\%)		${ }^{341(7.5 \% \%)}$			${ }^{33}$ [170.4\%)	-0.03	(106 (11.42)	(122(12.12)	-0.02	(188 (10.0\%)	${ }^{1,496(10.4 \%)}$	-0.01

