[^0]| SAP Version | Date |
| :---: | :---: |
| Final Version 2.0 | 19 October 2018 |

STUDY NUMBER:	Y-52-52120-153
EUDRACT NUMBER:	2010-021817-22
PROTOCOL TITLE:	A PHASE III, MULTICENTRE, DOUBLE BLIND, PROSPECTIVE, RANDOMISED, CONTROLLED, MULTIPLE TREATMENT STUDY ASSESSING EFFICACY AND SAFETY OF DYSPORT USED IN THE TREATMENT OF UPPER LIMB SPASTICITY IN CHILDREN
SAP VERSION:	Final Version 2.0
SAP DATE:	19 October 2018

Further to your review and agreement to the Statistical Analysis Plan version indicated above, please sign to indicate approval for your area of responsibility:

TABLE OF CONTENTS

1 INFORMATION TAKEN FROM THE PROTOCOL 10
1.1 Study Objectives 10
1.1.1 Primary Objective 10
1.1.2 Secondary Objectives 10
1.1.3 Tertiary Objectives 10
1.2 Study Design 10
1.2.1 Study Treatment 12
1.2.2 Study Population 14
1.2.3 Study Exposure 14
1.3 Methods and Procedures 15
1.3.1 Subject Identification and Allocation to Study Treatment 15
1.3.2 Subject Assessments 15
1.3.2.1 Efficacy Assessments 15
1.3.2.2 Safety Assessments 17
1.3.2.3 Other Assessments 18
1.3.2.4 Withdrawal/Discontinuation. 18
1.3.3 Schedule of Assessments 20
1.3.4 Planned Sample Size. 25
2 SUBJECT POPULATIONS (ANALYSIS SETS) 26
2.1 Efficacy 26
2.1.1 Modified Intent-to-treat Population 26
2.1.2 Per Protocol Population 26
2.2 Safety Population 26
2.3 Screened Population 26
2.4 Randomised Population 26
2.5 Pharmacokinetics 27
2.6 Populations of Primary Interest 27
2.7 Reasons for Exclusion from the Populations 27
3 STATISTICAL METHODS 27
3.1 Statistical Analysis Strategy 27
3.1.1 Primary Efficacy Endpoint 28
3.1.2 Secondary Efficacy Endpoints. 28
3.1.3 Tertiary Efficacy Endpoints. 28
3.1.4 Safety Endpoints 29
3.1.5 Multiplicity 30
3.1.5.1 Statistical Methodology for the Efficacy Analyses in View of Registration in the US 30
3.1.5.2 Statistical Methodology for the Efficacy Analyses in View of Registration in the Non US Countries 31
3.1.6 Significance Testing and Estimation 31
3.2 Analysis Methods 32
3.2.1 Treatment Groups 32
3.2.1.1 Efficacy Treatment Groups 32
3.2.1.2 Safety Treatment Groups 32
3.2.2 Efficacy 33
3.2.2.1 Primary Efficacy Analysis 34
3.2.2.2 Sensitivity Analyses for the Primary Efficacy Endpoint 34
3.2.2.3 Secondary Efficacy Analysis 36
3.2.2.4 Sensitivity Analyses for the First Secondary Efficacy Endpoint 37
3.2.2.5 Tertiary Efficacy Analysis 38
3.2.2.6 Figures on Efficacy Endpoints 42
3.2.2.7 Subgroup Efficacy Analyses and Covariates 42
3.2.3 Safety 42
3.2.3.1 Adverse Events 43
3.2.3.2 Physical and Neurological Examinations 48
3.2.3.3 Laboratory Data 48
3.2.3.4 Vital Signs 48
3.2.3.5 Electrocardiogram 49
3.2.3.6 Presence of Antibodies to Botulinum Toxin Type A 50
3.2.3.7 Subgroup Safety Analyses 50
3.2.4 Missing Data and Outliers 51
3.2.4.1 Missing Data. 51
3.2.4.2 Missing or Incomplete Dates 52
3.2.4.3 Outliers 52
3.2.5 Subject Disposition 52
3.2.6 Withdrawals 53
3.2.7 Demographic and Baseline Characteristics 53
3.2.8 Medical and Surgical History. 54
3.2.8.1 Cerebral Palsy History 54
3.2.8.2 Other Significant Medical and Surgical History 55
3.2.9 Study Exposure/Treatment Profile 55
3.2.9.1 Summary of Exposure to IMP Across the Study 55
3.2.9.2 Exposure During Fixed Dose Treatment Cycle 1 and over Repeat Treatments 55
3.2.9.3 Summary of Location of Treatment. 55
3.2.9.4 Exposure to Specific Treatments 56
3.2.10 Prior and Concomitant Therapies 57
3.2.10.1 Botulinum Toxin History 57
3.2.10.2 Other Prior and Concomitant Therapies (Medications and Non-drug Therapies) 57
3.2.11 Pharmacokinetics and Antibodies 58
3.2.12 Pharmacodynamics 58
3.2.13 Derived Data 58
3.2.13.1 Age 58
3.2.13.2 Body Mass Index 58
3.2.13.3 Therapeutic Class 58
3.2.13.4 Changes from Baseline 59
3.2.13.5 Adverse Event Duration 59
3.2.13.6 Adverse Event Episode Duration 59
3.2.13.7 Time since Study Treatment Administration for Adverse Event 59
3.2.13.8 Study Duration (all Treatment Cycles) 59
3.2.13.9 Treatment Cycle Duration 59
3.2.13.10 Study Treatment Exposure (all Treatments) 60
3.2.13.11 Treatment Cycle Exposure 60
3.2.13.12 Time Intervals between Treatments 60
3.2.13.13 Time to Retreatment 60
3.2.13.14 Concomitant Therapy Duration 60
3.2.13.15 Study Day 60
3.2.13.16 Treatment Cycle Day 60
3.2.13.17 Botulinum Toxin Treatment Duration 61
3.2.13.18 Centre Post Pooling 61
3.2.13.19 Modified Ashworth Scale 61
3.2.13.20 Goal Attainment Scale 61
3.2.13.21 Pediatric Quality of Life Inventory ${ }^{T M}$ 62
3.2.13.22 Electrocardiogram Average Result 62
3.2.13.23 Type of ECG Abnormality "Other Conduction Abnormalities", 62
3.2.13.24 Class of ECG Abnormality "Other Abnormalities" 62
3.2.13.25 New Morphologies 62
3.2.13.26 Special Interest Flag for AE 62
3.2.14 Visit Windows 62
3.2.15 Rules and Data Formats 63
3.2.16 Pooling of Centres 64
3.2.17 Interim Analysis 64
3.2.18 Role of Data and Safety Monitoring Board 64
4 COMPUTER SYSTEMS, SOFTWARE AND VALIDATION OF PROGRAMS 64
4.1 Hardware 64
4.2 Software 65
SAP Final Version 2.0: 19 Oct 2018 6/108
4.3 Validation and QC (Quality Control) Plan 65
4.4 Restitution of the Programs 65
5 CHANGES FROM PROTOCOL 65
6 REFERENCES 66
7 DATA PRESENTATION 67
7.1 Listings Index 67
7.2 Tables Index 69
7.3 Figures Index 89
7.4 Statistical Appendix 90
7.5 Statistical Appendix Index 91
8 APPENDICES 94
8.1 Vital Signs Normal Ranges 94
8.1.1 Heart Rate 94
8.1.2 Blood Pressure 94
8.2 Body Mass Index Normal Ranges 94
8.3 CCl 104
8.5 Study Limb Dose in Units 106

LIST OF TABLES

Table 1 Planned Dysport Dose per Group and Treatment Cycle................................. 12
Table 2 Reduction and Increase of Dysport Dose at Treatment Cycles 2, 3, and 4 13
Table 3 Dysport Dose in the Non-Study Upper Limb at Treatment Cycles 2, 3, and
Table 4 Dysport Dose in the Lower Limb(s) at Treatment Cycles 2, 3, and 4............. 13

Table 5 | Dysport Dose of Combined Non-Study Upper and Lower Limb(s) |
| :--- |
| Injection at Treatment Cycles 2, 3, and 4.. 14 |

Table 9 Correspondence between Original MAS Scores and Derived MAS Scores... 61
Table 10 Visit windows .. 63
Table 11 Heart rate normal ranges (bpm) .. 94
Table 12 Blood pressure normal ranges.. 94
Table 13 BMI categories .. 94

LIST OF FIGURES

$\begin{array}{ll}\text { Figure } 1 & \text { Planned Study Structure and Dose Modifications Available During the } \\ & \text { Study .. } 11\end{array}$

LIST OF ABBREVIATIONS AND DEFINITION OF TERMS

ABBREVIATION	Wording Definition
AE	Adverse Event
AESI	Adverse Event of Special Interest
CCI	Alkaline Phosphatase
ALP	Analysis of Covariance
ANCOVA	Analysis of Variance
ANOVA	Anatomic Therapeutic Chemical
ATC	Blind Data Review Meeting
BDRM	Body Mass Index
BMI	Blood Pressure
BP	Beats per minute
bpm	Botulinum Toxin
BTX	Botulinum Toxin Type A
BTX-A	Botulinum Toxin Type A Antibodies
BTX-A-Abs	Committee for Medicinal Products for Human Use
CHMP	Confidence Interval
CI	Cerebral Palsy
CP	Electrocardiogram
ECG	Electronic Case Report Form
eCRF	End of Study
EOS	Early Withdrawal
EW	Food and Drug Administration
FDA	Modified Ashworth Score
CCI	International Council for Harmonization
GAS	Goal Attainment Scale
GMFCS	Gross Motor Function Classification System
HR	Heart Rate
ICH	Manual Ability Classification System
ID	LLT

CONFIDENTIAL

ABBREVIATION	Wording Definition
MedDRA	Medical Dictionary for Regulatory Authorities
mITT	Modified Intent to Treat
PDD	Protocol Deviations Document
PedsQL	Paediatric Quality of Life
PGA	Physician's Global Assessment Scale of Treatment
Pesponse	
POM	Proportional Odds Model
PP	Per protocol
CCI	Preferred Term
PT	Primary Targeted Muscle Group
PTMG	Quality Control
QC	Quality of Life
QoL	Serious Adverse Event
SAE	Statistical Analysis Plan
SAP	Standardised MedDRA Query
SMQ	System Organ Class (in MedDRA)
SOC	Standard Operating Procedure
SOP	Treatment-Emergent Adverse Event
TEAE	Treatment-Emergent Adverse Event Leading to
TEAEWD	Withdrawal
TLF	Table, Listing, and Figure
CC	Units States of America
U	World Health Organization Drug Dictionary
US	Work Instruction
WHO-DD	
WI	Units

1 INFORMATION TAKEN FROM THE PROTOCOL

$1.1 \quad$ Study Objectives

1.1.1 Primary Objective

The primary study objective is to assess the efficacy of two doses of Dysport (8 Units/Kilogram (U / kg) and $16 \mathrm{U} / \mathrm{kg}$) compared to Dysport $2 \mathrm{U} / \mathrm{kg}$ used in the treatment of upper limb spasticity in children with cerebral palsy (CP) following a single treatment.

1.1.2 Secondary Objectives

The secondary study objective is to assess the long term safety of multiple treatments of Dysport used in this study population.

1.1.3 Tertiary Objectives

The tertiary study objectives \qquad
\square

1.2 Study Design

This is a phase III, multicentre, double blind, prospective, randomised, controlled multiple treatment study. Subjects will receive a maximum of four treatments over the course of a minimum of one year's study participation.
At study entry, subjects will be randomised into one of the following three treatment groups for Treatment Cycle 1:

- Group A: Dysport $16 \mathrm{U} / \mathrm{kg}$ in one upper extremity (the study limb).
- Group B: Dysport $8 \mathrm{U} / \mathrm{kg}$ in the study limb.
- Group C: Dysport $2 \mathrm{U} / \mathrm{kg}$ in the study limb.

Randomisation will be in a 1:1:1 ratio. Stratification will be performed according to age range (2 to 9 years and 10 to 17 years) and BTX (Botulinum Toxin) naïve or non-naïve status assessed at baseline.
For Treatment Cycles 2, 3 and 4, subjects are planned to receive Dysport $8 \mathrm{U} / \mathrm{kg}$ or $16 \mathrm{U} / \mathrm{kg}$ according to the treatment allocation by the IRS and will remain double blind throughout the study. However, it is possible that subjects will not receive the planned treatment as dose adaptations (reduction or increase) will be possible based upon the Investigator's judgements regarding safety and efficacy. The total dose for the study limb must not exceed 320 U in the $8 \mathrm{U} / \mathrm{kg}$ group and 640 U in the $16 \mathrm{U} / \mathrm{kg}$ group.
The planned retreatment interval is 16 weeks and a maximum of four treatments will be administered.
At study entry, a primary targeted muscle group (PTMG), either the elbow flexors or wrist flexors, will be nominated by the Investigator. The PTMG can be changed for subsequent treatments, from elbow to wrist flexors or wrist to elbow flexors, provided that the following criteria are fulfilled:

- The Modified Ashworth Scale (MAS) score of the other muscle group not selected for the last treatment (new PTMG) must be higher than the last treatment PTMG, and
- The new PTMG must have a modified MAS score of greater or equal to $1+$.

For Treatment Cycles 2, 3 and 4, injection into the lower extremity/extremities and the nonstudy upper limb will be allowed at the same time as the study limb is injected.
The stages of the study and the planned doses for the study are provided in Figure 1.
Figure 1 Planned Study Structure and Dose Modifications Available During the Study

Injection

All treatments

After each treatment administration, the follow up visit schedule is as follows:

- Week 2 (telephone call, safety follow up).
- Week 4 (telephone call, safety follow up).
- Week 6.
- Week 12 (telephone call, safety follow up).
- Week 16.

At Week 16, subjects will be assessed for their eligibility to receive the next treatment. Subjects who are eligible for retreatment will be given the next treatment. Any subjects not eligible for retreatment will be evaluated every 6 weeks ± 2 weeks in additional visits until they are eligible for retreatment.
Each subject will participate in the study for approximately 1 year to 1 year and 9 months depending on the number of treatments administered and the treatment intervals. The duration of the follow up period will be dependent upon the treatment interval as follows:

- All subjects whose first three treatment intervals fall between ≥ 16 and ≤ 22 weeks will receive four treatments and will exit the study as soon as a new
injection is required and no later than 22 weeks after last injection (up to a maximum of 1 year and 9 months' study duration).
- All other subjects will not be given any further study treatment after Week 52 and will exit the study after 16 weeks of follow up of the last treatment.

1.2.1 Study Treatment

Subjects will receive a fixed dose of Dysport $2 \mathrm{U} / \mathrm{kg}, 8 \mathrm{U} / \mathrm{kg}$ or $16 \mathrm{U} / \mathrm{kg}$ in the study upper limb in Treatment Cycle 1 and are planned to receive Dysport $8 \mathrm{U} / \mathrm{kg}$ or $16 \mathrm{U} / \mathrm{kg}$ in subsequent treatments according to the treatment allocation by the IRS, illustrated below, and both Investigators and subjects will remain blinded throughout the study. The allocated dose will be reconstituted to a fixed volume of 1.6 mL for injection.

Table 1 Planned Dysport Dose per Group and Treatment Cycle

Group	Number of Subjects	Treatment Cycle 1 $^{(\mathbf{a})}$	Treatment Cycles $\mathbf{2 , 3}$ and 4
(a)			

${ }^{(a)}$ The total dose for the study limb must not exceed 320 U in the $8 \mathrm{U} / \mathrm{kg}$ group and 640 U in the $16 \mathrm{U} / \mathrm{kg}$ group.
${ }^{(b)}$ In this group, dynamic dose dispensing will be done by IRS at Treatment Cycle 2 to maintain a balance between subjects receiving $8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$.
For Treatment Cycles 2, 3 and 4, and according to subject response, if any given total dose is not tolerated, the Investigator will request a dose reduction of 50% in the IRS.

For Treatment Cycles 3 and 4, if any given total dose is not adequate for the treatment of the subject's upper limb spasticity, the Investigator can request a dose increase in the IRS.
dose increase is possible for those subjects who were given Dysport $16 \mathrm{U} / \mathrm{kg}$ as the subject was already given the highest dose allowed in the study. \qquad

CCl

If there is no need to inject the lower limbs, and only the non-study upper limb is to be injected (on top of the study upper limb), the dose in the non-study upper limb should not exceed the dose detailed in Table 3.

Table 3 Dysport Dose in the Non-Study Upper Limb at Treatment Cycles 2, 3, and 4

Body Weight (kg)	Maximum Dose
10 to 40	$5 \mathrm{U} / \mathrm{kg}$, calculated up to 40 kg
40 and over	200 U

If there is no need to inject the non-study upper limb and only one or two lower $\operatorname{limb}(\mathrm{s})$ are to be injected (on top of the study upper limb), the dose in the lower limb(s) should not exceed the dose detailed in Table 4.

Table 4 Dysport Dose in the Lower Limb(s) at Treatment Cycles 2, 3, and 4

Body Weight (kg)	Maximum Dose
10 to 36	$10 \mathrm{U} / \mathrm{kg}$, calculated up to 36 kg
36 and over	360 U

CONFIDENTIAL

SAP Final Version 2.0: 19 Oct 2018
14/108

1.2.2 Study Population

Approximately 210 male and female subjects will be randomised into the study. Subjects will be between 2 and 17 years of age, with a body weight of $\geq 10 \mathrm{~kg}$, with a diagnosis of CP and who have increased muscle tone/spasticity in at least one upper limb. Additionally, subjects must have a MAS score ≥ 2 in the upper limb PTMG of the study limb (the limb to be injected at Treatment Cycle 1) at the baseline visit and be classified as Gross Motor Function Classification System (GMFCS) Level 1 to 4.

1.2.3 Study Exposure

The overall duration of the study is anticipated to be approximately 4 years and 9 months. Individual subject participation will be approximately 1 year to 1 year and 9 months, depending on the number of treatments administered and the treatment intervals. The 1 year and 9 month follow up period will enable subjects whose first three treatment intervals fall between >16 and ≤ 22 weeks to receive four treatments, therefore providing efficacy data for a minimum of 1 year.

1.3 Methods and Procedures

1.3.1 Subject Identification and Allocation to Study Treatment

All subjects enrolled must be identifiable throughout the study. The Investigator will maintain a list of subject numbers and names to enable records to be found at a later date if required.
At screening, potential subjects will be allocated a subject number. Following confirmation of eligibility for the study, subjects will be given a randomisation number and allocated to one of the treatment groups specified in Section 1.2.

1.3.2 Subject Assessments

1.3.2.1 Efficacy Assessments

- MAS: A six-point scale which measures the amount of muscle tone by measuring the resistance of the muscle to passive lengthening or stretching [4]. The Investigator will grade muscle tone in the PTMG (elbow flexors or wrist flexors) from 0 (no increase in tone) to 4 (affected part(s) rigid in flexion or extension). The MAS will also be used to assess muscle tone in the injected muscles (elbow, wrist and finger flexors) in the study limb other than the ones of the PTMG, as well as to assess muscle tone in the injected muscles of the nonstudy upper limb.
The MAS will be obtained at baseline, at Week 6 and Week 16 of each Treatment Cycle, and also at the end of study (EOS) visit or early withdrawal (EW).
Also quantitative analyses on the MAS score will be performed, the original score ' $1+$ ' will be considered as the derived numeric score ' 2 ' and the higher original numeric scores will be incremented by one as summarized in Section 3.2.13.19.
- Physician's Global Assessment Scale of Treatment Response (PGA): The PGA of treatment response will be assessed by asking the Investigator the following question: 'how would you rate the response to treatment in the subject's upper limb since the start of the study?' Answers will be made on a nine-point rating scale (-4: markedly worse, -3: much worse, -2: worse, -1 : slightly worse, 0 : no change, +1 : slightly improved, +2 : improved, +3 : much improved, and +4 : markedly improved).
The PGA of treatment response will be obtained at baseline, at Week 6 and Week 16 of each Treatment Cycle, and also at the EOS/EW.
- Goal Attainment Scale (GAS): A functional scale used to measure progress towards individual therapy goals. At baseline of each Treatment Cycle one to three individual goals will be defined for each subject by the Investigator and the child's parents/guardians/caregivers prior to treatment. The importance and difficulty of each selected goal will be rated on a scale from 0 (Not at all important/difficult) to 3 (very important/difficult). Exactly one goal (the primary goal) must be rated as very important. Post-baseline the outcome to reach each goal will be rated on a 5 -point scale (-2 : Much less than expected outcome, -1 : somewhat less than expected outcome, 0 : expected outcome, 1 : somewhat more than expected outcome, 2: Much more than expected outcome) has to be determined.

The GAS for each goal will be evaluated post-baseline at Week 6 and Week 16 of each Treatment Cycle, and also at the EOS/EW, and the total GAS score will be calculated using the formula in Section 3.2.13.20. A total GAS score of 50 means all individual goals have been achieved as expected.

- Paediatric Quality of Life (PEDsQL) Inventory: Parents/guardians will be asked to complete questionnaires on their child's QoL [15] at each post-treatment visit to the study centre except Week 6. The PedsQL parent inventory measures healthcare concepts for children/adolescents of ages 2 to 18 years of age [16]. The Generic Core Scales cover four multidimensional scales including physical, emotional, social and school aspects with three
summary scales of total scale score, physical health summary score and psychosocial health summary score.
Parents/guardians will also complete the Condition-specific Module in CP (in countries where translation is available) [16], which is a complement to the Generic Core Scale of the PedsQL. It is designed to provide greater measurement sensitivity for circumscribed populations. The answers to the questionnaire will be obtained at baseline, at Week 16 of Treatment Cycle 1, and at the EOS/EW.
- For each defined scale a score is calculated using the transformations in Section 3.2.13.21.

1.3.2.2 Safety Assessments

- Adverse Events (AEs): Collected from the signing of informed consent up until the EOS.
- Physical examination: A physical examination will be carried out by a physician or by another qualified staff member designated by the Investigator at the screening visit and at the EOS/EW. If in the opinion of the Investigator there are any clinically significant changes in the physical examination findings (abnormalities) they will be recorded as AEs.
- Vital signs: Systolic and diastolic blood pressure (BP), and heart rate (HR) will be measured at each visit to the study centre. Blood pressure will be measured with the subject in a sitting position.
- Electrocardiogram (ECG): Subjects will have a set of three 12-lead ECG recordings taken at the screening visit (considered as baseline assessment), then subsequently one 12-lead ECG at Treatment Cycle 1, Week 6 and at the EOS/EW. The 12-lead ECG recordings will be performed at a paper speed of $25 \mathrm{~mm} / \mathrm{sec}$, recorded with the subject supine. Analysis of the ECG results will be performed in a central laboratory.
Analysis of the duration of the QT/QTc interval (for both Fridericia's and Bazett's methods), the HR and the presence of any of the following ECG abnormalities: new morphologies, arrhythmias, second degree AV block, third degree AV block, ST segment abnormalities, T-wave abnormalities, Uwave abnormalities, myocardial infarction, right bundle branch block, left bundle branch block will be performed. These and any other clinically relevant abnormality will also be reported by the central provider to the Investigator and recorded as an AE.
- Clinical laboratory parameters:

Clinical chemistry (including serum Alkaline Phosphatase (ALP) - total and bone isoenzyme, and HbA1c): Blood sample will be collected at Treatment Cycle 1, Day 1 (baseline) and EOS/EW. In addition, a blood sample for serum ALP - total and bone isoenzyme, and HbA 1 c only will be collected at Treatment Cycle 1, Week 16.
Pregnancy test: At Day 1 of each treatment for all female subjects of childbearing potential and for those subjects reaching Tanner Stage II or more breast development, a urine sample will be collected for a pregnancy test. If
the urine pregnancy test is found to be positive, it will be followed up with a serum pregnancy test (1 mL blood) conducted at the central laboratory.

- Presence of antibodies against BTX-A (BTX-A-Abs): Tests for the presence of BTX-A-Abs will be done prior to study treatment administration at baseline and at the EOS/EW.

1.3.2.3 Other Assessments

Other assessments collected include the following, recorded at screening only unless otherwise specified:

- Demographics (date of birth/age, sex, ethnicity and race)
- Medical and surgical history (including ongoing medical history)
- Cerebral Palsy history and status
- Botulinum toxin treatment history
- Gross motor function classification system level
- Neurological examination
- Body weight and height (recorded at baseline, Week 16, and at the EOS/EW)
- Tanner grading scale for breast development (all female subjects)
- Hypertonia assessment tool
- Manual Ability Classification System (MACS) for subjects older than 4 years of age (4 years included) and mini-MACS for subjects between 2 and 4 years of age (4 years excluded) (baseline only)
- Prior and concomitant medications and non drug therapies (including physiotherapy, and occupational therapy) and concomitant surgical procedures throughout the study
- Home exercises and use of splints and/or orthoses throughout the study.

1.3.2.4 Withdrawal/Discontinuation

Under no circumstances will subjects be randomised into this study more than once. If one or more of the following occurs, the subject will be withdrawn from the study:

- Withdrawal of informed consent
- Requirement for administration of concomitant medications and/or treatments that are not allowed under the study protocol
- Occurrence of an AE or other nonmedical event, that in the opinion of the Investigator, would not be in the subject's best interest were they to continue in the study
- Pregnancy
- Investigator's and/or Sponsor's decision to withdraw the subject if it is considered to be in the subject's best interest
- Continuous failure to comply with the provisions of the study protocol which is likely to have an adverse impact on the safety or wellbeing of the subject or subjects, or to jeopardise the scientific value of the study

- Requirement during the study of an injection in the nonstudy upper limb or lower limb(s) without an injection in the study limb.
The exact reason(s) for withdrawal must be recorded, if available. If possible, a complete final examination should be performed for all subjects who withdraw. In case of withdrawal due to an AE , the subject should be followed up by the Investigator outside the study framework.

1.3.4 Planned Sample Size

The sample size required for this study has been determined on the basis of the sample size estimate for each of the three criteria to be considered (superiority of any of the two tested Dysport doses to Dysport $2 \mathrm{U} / \mathrm{kg}$ on the primary efficacy endpoint, superiority of any of the two tested Dysport doses to Dysport $2 \mathrm{U} / \mathrm{kg}$ on the first secondary efficacy endpoint, and proper assessment of the long term safety of the two tested Dysport doses); the largest of these three estimates is used as the sample size of the study.

Sample Size of the Study

Given the above sample size estimates, a targeted study sample size of 210 randomised subjects (i.e. 70 randomised subjects per treatment group) is considered sufficient to meet both the primary efficacy objective and the long term safety objectives.
Using a sample size of 210 as the largest of the three required figures means the actual power for the testing on the primary efficacy endpoint and the testing on the first secondary efficacy endpoint rises to 99% and 99%, respectively. As a result, the actual power of the study to detect a significant effect of any tested Dysport dose for both efficacy endpoints (US-targeted methodology) is 98% (= 99\% x 99\%).
2 SUBJECT POPULATIONS (ANALYSIS SETS)

2.1 Efficacy

2.1.1 Modified Intent-to-treat Population

The modified Intent-to-treat (mITT) population will consist of all randomised subjects who received at least one injection of the study treatment and had a MAS score in the PTMG assessed both at baseline and at Treatment Cycle 1, Week 6.
The mITT population will be analysed using the dose group as randomised, regardless of treatment actually received.

2.1.2 Per Protocol Population

The Per Protocol (PP) population will consist of all subjects from the mITT population who are not major protocol violators between baseline and the Treatment Cycle 1, Week 6 visit (inclusive).
The allocation of subjects to the PP population will be finalized and documented prior to unblinding.
The PP population will be analysed using the dose group as randomised, regardless of treatment actually received.

2.2 Safety Population

The safety population will consist of all randomised subjects who received at least one injection of study treatment, analysed using dose actually received.
In case a subject has not received the planned dose of 1.6 ml in the study limb the actual study limb dose will be calculated based on the actual volume received.

2.3 Screened Population

The screened population will consist of all subjects enrolled.

2.4 Randomised Population

The Randomised population will consist of all subjects randomised i.e. all subjects allocated to a treatment group at random.

2.5 Pharmacokinetics

Not applicable.

2.6 Populations of Primary Interest

For the fixed dose Treatment Cycle 1, the primary population for the efficacy analyses will be the mITT population.
Secondary populations of interest for the efficacy analyses will be the PP population and the Randomised Population.
For the evaluation of efficacy over repeated treatments, analyses per Treatment Cycle will be performed using the available data from all subjects of the mITT population in the specified treatment cycle according to the planned dose for the specified treatment cycle.
The safety analyses of the fixed dose Treatment Cycle 1 will be performed on the safety population.
For the evaluation of safety over repeated treatments, analyses per Treatment Cycle will be performed using the available data from all subjects of the safety population in the specified treatment cycle according to the actual dose received in the specified Treatment Cycle.

2.7 Reasons for Exclusion from the Populations

Any major protocol deviation will be described in the Protocol Deviations Document (PDD) and its impact on the membership to each analysis population (i.e. mITT, PP and safety populations) for any subject having experienced it will be specified.
The list of major protocol deviations impacting the PP population membership in the latest version of the PDD will be reviewed during the blind data review meeting (BDRM) held prior to database lock, before any unblinding of treatment groups. If necessary, that list will be updated to include any additional major protocol deviation impacting the PP population membership. PP population will be defined for the fixed dose Treatment Cycle 1 only.

3 STATISTICAL METHODS

3.1 Statistical Analysis Strategy

The statistical analyses will be performed in accordance with ICH E9 guideline [1] and will be based on the pooled data from the individual study sites, unless otherwise stated.
Statistical analyses will be performed by a Contract Research Organisation CCl , under the supervision of the Sponsor's statisticians.
Overall, the analysis strategy is to evaluate efficacy and safety data from the initial fixed dose Treatment Cycle 1, where only the study limb could be treated. In addition efficacy and safety over repeated treatments will be evaluated, using analyses by Treatment Cycle, as described below.
Baseline for all analyses, including by Treatment Cycle, is defined as the last value prior to the initial Study Treatment 1 on Day 1.

Fixed dose Treatment Cycle 1

For assessment of efficacy and safety of Dysport 8 or $16 \mathrm{U} / \mathrm{kg}$ for the treatment of upper limb spasticity, relative to the minimal dose of $2 \mathrm{U} / \mathrm{kg}$, Treatment Cycle 1 will be evaluated in which a fixed dose was administered to the designated study limb.
Data will be analysed according to the randomised dose (efficacy) or actual dose received (safety) for the study limb in Treatment Cycle 1.

Repeat Treatment

For the assessment of efficacy and safety over repeated Dysport treatments, the focus will be on those subjects who received 8 or $16 \mathrm{U} / \mathrm{kg}$ in the study limb. Data will be presented by Treatment Cycle and analysed according to the planned dose (efficacy) or actual dose received (safety) in the study limb in the stipulated Treatment Cycle.
As subjects can receive Dysport in the lower limb(s) and non-study upper limb from Study Treatment 2 onwards, safety over repeated Treatment Cycles will also be evaluated using the total body dose of Dysport received in the specified Treatment Cycle.

3.1.1 Primary Efficacy Endpoint

The primary efficacy endpoint is the mean change from Baseline to Treatment Cycle 1, Week 6 in MAS score in the Treatment 1 Cycle PTMG (elbow flexors or wrist flexors).

3.1.2 Secondary Efficacy Endpoints

The secondary efficacy endpoints are:

- Mean PGA score at Treatment Cycle 1, Week 6.
- Mean GAS score at Treatment Cycle 1, Week 6.

3.1.3 Tertiary Efficacy Endpoints

In the following list, the term 'all post-treatment visits' refers to data from each visit at each treatment cycle (Treatment Cycles 1, 2, 3, and 4), unless it is specifically stated that it relates only to visits from the fixed dose Treatment Cycle 1.
Where the term 'except Week 6' is utilised for analyses of Treatment Cycle 1, it only means that this is already a specified primary or secondary endpoint, not that it will not be analysed.

- Mean change from Baseline to all post-treatment visits of Treatment Cycle 1 (except Week 6) in MAS score in the Treatment Cycle 1 PTMG.
- Mean change from Baseline to all post-treatment visits in MAS score in each injected muscle group (elbow, wrist and finger flexors) of the study limb.

- Mean PGA score at all post-treatment visits (except Treatment Cycle 1, Week $6)$.

- Mean GAS score at all post-treatment visits (except Treatment Cycle 1, Week $6)$.

- Mean change from Baseline to both post-treatment PedsQL scores.

3.1.4 Safety Endpoints

The safety endpoints are:

- Treatment emergent adverse events (TEAEs) .
- Vital signs (systolic and diastolic BP and HR): absolute values and change from Baseline at each visit to the study centre.
- Body weight and height: absolute values and change from baseline at Week 16 of each treatment and at the EOS/EW.
- Clinical chemistry (including serum ALP - total and bone isoenzyme, and HbA1c): absolute values and change from Baseline at Treatment Cycle 1, Week 16 (serum ALP - total and bone isoenzyme, and HbA1c only) and at the EOS/EW.
- Presence of antibodies against Botulinum Toxin Type A (BTX-A-Abs) at baseline and at the EOS/EW.
- A 12-lead ECG: absolute values and change from Baseline in ECG parameters and morphology at Treatment Cycle 1, Week 6 and at the EOS/EW.

3.1.5 Multiplicity

3.1.6 Significance Testing and Estimation

Fixed Dose Treatment Cycle 1
Apart from tests described in section 3.1.5, all statistical tests performed on the fixed dose Treatment Cycle 1 efficacy endpoints will be conducted, unless otherwise specified, at a two-tailed α level of 0.05 and each tested Dysport dose group ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) will be compared to Dysport $2 \mathrm{U} / \mathrm{kg}$ separately. Statistical tests will be performed on the efficacy endpoints for Treatment Cycle 1, up to Week 16 (inclusive), no statistical tests will be performed for any additional visits of Treatment Cycle 1 (any visits after Week 16).

Repeat Treatment

For the analyses by Treatment Cycle no statistical testing will be performed.

3.2 Analysis Methods

Unless otherwise specified, all summary tables will be presented by treatment groups defined in the following sections. For data listings, all data will be listed by subject, Treatment Cycle and visit (or assessment date), if applicable.

3.2.1 Treatment Groups

3.2.1.1 Efficacy Treatment Groups

Fixed Dose Treatment Cycle 1
For Treatment Cycle 1 data will be summarized by the randomised Dysport Dose in the study limb. Data will be tabulated by randomised study limb treatment group, as labelled and ordered below:

- Dysport $2 \mathrm{U} / \mathrm{kg}$
- Dysport $8 \mathrm{U} / \mathrm{kg}$
- Dysport $16 \mathrm{U} / \mathrm{kg}$
- Dysport Combined 8 and $16 \mathrm{U} / \mathrm{kg}$.

Repeat Treatment

For the evaluation of repeated Dysport treatment by Treatment Cycle (Treatment Cycles 2, 3, and 4) data will be tabulated by the planned dose to be administered to study limb in the designated Treatment Cycle. Data will be tabulated by study limb treatment group, as labelled and ordered below:

- Dysport $4 \mathrm{U} / \mathrm{kg}$
- Dysport $8 \mathrm{U} / \mathrm{kg}$
- Dysport $16 \mathrm{U} / \mathrm{kg}$
- Dysport Combined 8 and $16 \mathrm{U} / \mathrm{kg}$.

The $4 \mathrm{U} / \mathrm{kg}$ group will include all subjects who received $4 \mathrm{U} / \mathrm{kg}$ or less.

3.2.1.2 Safety Treatment Groups

Fixed Dose Treatment Cycle 1

Safety data for Treatment Cycle 1 will be summarized by the actual Dysport dose received in the study limb, as labelled and ordered below:

- Dysport $2 \mathrm{U} / \mathrm{kg}$
- Dysport $8 \mathrm{U} / \mathrm{kg}$
- Dysport $16 \mathrm{U} / \mathrm{kg}$
- Dysport Combined 8 and $16 \mathrm{U} / \mathrm{kg}$
- Total Dysport.

Subjects who received an actual dose $\leq 6 \mathrm{U} / \mathrm{kg}$ at Treatment Cycle 1 will be assigned to treatment group 'Dysport $2 \mathrm{U} / \mathrm{kg}$ ', subjects who received an actual dose from $>6 \mathrm{U} / \mathrm{kg}$ to $\leq 12 \mathrm{U} / \mathrm{kg}$ will be assigned to treatment group 'Dysport $8 \mathrm{U} / \mathrm{kg}$ ', and subjects with an actual dose $>12 \mathrm{U} / \mathrm{kg}$ will be assigned to 'Dysport $16 \mathrm{U} / \mathrm{kg}$ '.
In addition, selected safety tables will be repeated for those subjects who have received an actual Dysport dose in the study limb of exactly 2, 8, or $16 \mathrm{U} / \mathrm{kg}$, i.e. excluding those who did not receive precisely the dose stated and were allocated to the nearest dose group, as described above).

Repeat Treatment

For the evaluation of repeated Dysport treatment data will be tabulated by the actual dose received in the study limb in the designated Treatment Cycle.
Data will be tabulated by study limb treatment group, as labelled and ordered below:

- Dysport $2 / 4 \mathrm{U} / \mathrm{kg}$
- Dysport $8 \mathrm{U} / \mathrm{kg}$
- Dysport $16 \mathrm{U} / \mathrm{kg}$
- Dysport Combined 8 and $16 \mathrm{U} / \mathrm{kg}$
- Total Dysport.

Subjects who received an actual dose $\leq 6 \mathrm{U} / \mathrm{kg}$ at Treatment Cycle 1 will be assigned to treatment group 'Dysport $2 / 4 \mathrm{U} / \mathrm{kg}$ ', subjects who received an actual dose from $>6 \mathrm{U} / \mathrm{kg}$ to $\leq 12 \mathrm{U} / \mathrm{kg}$ will be assigned to treatment group 'Dysport $8 \mathrm{U} / \mathrm{kg}$ ', and subjects with an actual dose $>12 \mathrm{U} / \mathrm{kg}$ will be assigned to 'Dysport $16 \mathrm{U} / \mathrm{kg}$ '.

In addition, selected tables will be analysed by the actual total body dose received in the designated Treatment Cycle (in U/kg). The total body dose will be assigned based on the sum of the dose administered into each limb injected.
For the total body dose treatment groups will be labelled and ordered as follows:

- Dysport $\leq 5 \mathrm{U} / \mathrm{kg}$
- Dysport $10 \mathrm{U} / \mathrm{kg}$
- Dysport 20 U/kg
- Dysport $30 \mathrm{U} / \mathrm{kg}$
- Total Dysport.

Subjects who received an actual dose from $>5 \mathrm{U} / \mathrm{kg}$ to $\leq 15 \mathrm{U} / \mathrm{kg}$ will be assigned to treatment group 'Dysport $10 \mathrm{U} / \mathrm{kg}$ ', subjects who received an actual dose from $>15 \mathrm{U} / \mathrm{kg}$ to $\leq 25 \mathrm{U} / \mathrm{kg}$ will be assigned to treatment group 'Dysport $20 \mathrm{U} / \mathrm{kg}$ ', and subjects with an actual dose $>25 \mathrm{U} / \mathrm{kg}$ will be assigned to 'Dysport $30 \mathrm{U} / \mathrm{kg}$ '.

3.2.2 Efficacy

All efficacy analyses for the fixed dose Treatment Cycle 1 will be performed on the mITT population. Assessment of repeat efficacy by Treatment Cycle will only include subjects who received the treatment in the designated Treatment Cycle. The primary and secondary efficacy analyses (designated efficacy parameters at Week 6 of the fixed dose Treatment Cycle 1) will also be performed on the PP population. Efficacy tables will be presented by treatment group of the Study Limb Dose, see Section 3.2.1.1.
Baseline will be defined as the last measurement collected prior to receiving the initial study treatment in Treatment Cycle 1 on Day 1. MAS score,
may also have been measured in muscle groups other than those injected. Only assessments from subjects who received treatment in the respective muscle group will be included in the analyses.
In addition to the analyses described below, descriptive statistics will be provided for all efficacy endpoints.

3.2.2.1 Primary Efficacy Analysis

The primary efficacy endpoint is the mean change from Baseline to Treatment Cycle 1, Week 6 in MAS score in the Treatment Cycle 1 PTMG (elbow flexors or wrist flexors).
The primary efficacy endpoint will be analysed using an Analysis of Covariance (ANCOVA) on the rank of the mean changes. This model will include treatment group, the baseline value, the two stratification factors (age range and BTX treatment naïve status at baseline) and the pooled centre as fixed covariates.
For handling of multiplicity see section 3.1.5.
Adjusted means (LS Means) together with their standard error (SE) and 95\% confidence interval (CI) will be provided for the ranked changes of each treatment group. To help interpret the results the LS mean rank values will be back transformed to the original (derived) scale. The LS means on the original scale will be presented as well as the estimate of the magnitude of the back transformed difference between the treatment groups (for any of the two tested doses of Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$), the LS mean of the back transformed difference Dysport tested dose - Dysport $2 \mathrm{U} / \mathrm{kg}$) and the associated p-values. Additionally, for all other effects taken into account in the ANCOVA the respective type III test p-value will be presented.
The following SAS $^{\circledR}$ code will be used to compare the Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) versus Dysport $2 \mathrm{U} / \mathrm{kg}$.

ANCOVA model without interaction

proc mixed data $=<\mathrm{xxx}>$;
class Treatment age_range BTX_stratum centre;
model rank_change $=$ Treatment baseline age_range BTX_stratum centre / solution cl;
/* contrast analyses */
estimate 'Dysport $16 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}$ ' Treatment -1 $0 \mathrm{l} / \mathrm{cl}$;
estimate 'Dysport $8 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}^{\prime}$ Treatment -1 $10 / \mathrm{cl}$;
/* Adjusted means and 95\% CI by treatment group */
lsmeans Treatment/ cl ;
ods output SolutionF $=$ SolutionF Tests3 $=$ Tests3
Estimates $=$ Estimates LSMeans $=$ LSMeans;
run;
quit;

3.2.2.2 Sensitivity Analyses for the Primary Efficacy Endpoint

Centre Effect

In order to investigate homogeneity of treatment response across centres a sensitivity analysis will be conducted: The ANCOVA model on the rank will be rerun, adding the treatment by centre interaction term, fitted as a fixed effect. If the pvalue from the interaction term in the model is lower than 0.1 then the treatment by interaction will be deemed statistically significant and it will be concluded that the treatment effect is not constant from centre to centre. If this is the case then the influence of centre on the treatment effect will be further investigated by estimating and plotting the treatment groups differences (for any of the higher doses of Dysport, LS Mean of the rank values together with their SE and $95 \% \mathrm{CI}$ as well as
the LS mean of the back transformed difference ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) Dysport $2 \mathrm{U} / \mathrm{kg}$) separately for each centre. This analysis will be performed using postpooling centres. The strategy for pooling centres has been detailed in section 3.2.16.

ANCOVA model with interaction:

proc mixed data $=<x x x>$;
class Treatment BTX_stratum age_range centre;
model rank_change = Treatment baseline age_range BTX_stratum centre
centre*treatment / solution cl;
/* contrast analyses for centre 1 */
estimate 'Dysport $16 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}$ '
Treatment-1 01 Centre* Treatment -1 $01 / \mathrm{cl}$;
estimate 'Dysport $8 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}^{\prime}$
Treatment -1 10 Centre* Treatment -1 $10 / \mathrm{cl}$;
/* contrast analyses for centre 2 */
estimate 'Dysport $16 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}$ '
Treatment -1 01 Centre* Treatment $000-101 / \mathrm{cl}$;
estimate 'Dysport $8 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}^{\prime}$
Treatment -1 10 Centre* Treatment $000-110 / \mathrm{cl}$;
/* contrast analyses for last centre */
estimate 'Dysport $16 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}$ '
Treatment -101 Centre* Treatment $000 \ldots .101 / \mathrm{cl}$;
estimate 'Dysport $8 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}^{\prime}$
Treatment -1 10 Centre* Treatment $000 \ldots-110 / \mathrm{cl}$;
/* Adjusted means and 95% CI by treatment group */
lsmeans centre*Treatment/ cl ; ods output SolutionF = SolutionF Tests3 = Tests3
Estimates $=$ Estimates LSMeans $=$ LSMeans;
run;
quit;

Robustness (Proportional Odds Model)

To check the robustness of the rank ANCOVA analysis, a sensitivity analysis will be performed using the Proportional Odds Model (POM). This analysis will be applied to the ordered changes in MAS and the resulting odds ratio measures the relative probability of a higher improvement in MAS on Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) as compared to Dysport $2 \mathrm{U} / \mathrm{kg}$. An odds ratio >1 for Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) versus Dysport $2 \mathrm{U} / \mathrm{kg}$ indicates a positive treatment effect in favour of Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$), and an odds ratio <1 indicates a treatment effect in favour of Dysport $2 \mathrm{U} / \mathrm{kg}$. This model will include treatment group, the baseline value, the two stratification factors (age range and BTX treatment naive status at baseline) and the pooled centre as fixed covariates. The odds ratios will be presented together with their $95 \% \mathrm{CI}$ and the associated p-value. Additionally, for all other effects taken into account in the POM, the respective type III test p-value will be presented.
The following SAS^{\circledR} code will be used to compare the Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) versus Dysport $2 \mathrm{U} / \mathrm{kg}$.

SAP Final Version 2.0: 19 Oct 2018

36/108

```
proc logistic data = <xxx> order = internal;
    class Treatment (ref 'Dysport 2 U/kg') age_range BTX_stratum centre /
param = ref;
    model change (ascending) = Baseline Treatment age_range BTX_stratum
    centre / clodds = wald;
    oddsratio 'Treatment' Treatment / cl wald;
    /* contrast analyses */
    contrast 'Dysport 16 U/kg versus Dysport 2 U/kg' Treatment 1 0/ e estimate =
    exp;
    contrast 'Dysport 8 U/kg versus Dysport 2 U/kg' Treatment 0 1/ e estimate =
    exp;
    /* p-value and odds ratio by treatment group */
    ods output Nobs = Nobs Oddsratioswald = Oddsratios Contrastestimate =
    Contrasts Type3 = Type3 ConvergenceStatus = convstat
    CumulativeModelTest = Propval;
run;
quit;
```

In addition a summary table will present the number and percent of subjects within each change category at Week 6 by treatment group.

Missing Values

In order to assess the impact of missing data on the conclusion of the primary analysis sensitivity analysis of the primary efficacy endpoint will be performed on the population of all randomised subjects. Details are provided in section 3.2.4.1.

3.2.2.3 Secondary Efficacy Analysis

The first secondary efficacy endpoint is the mean PGA score at Treatment Cycle 1, Week 6.
This endpoint will be analysed using an Analysis of Variance (ANOVA) on the rank. This model will include treatment group, the two stratification factors and the pooled centre as fixed covariates.
For handling of multiplicity see section 3.1.5.
LS Means together with their SE and 95% CI will be provided for the rank values of each treatment group. The LS means on the original scale will be presented as well as the estimate of the magnitude of the back transformed difference between the treatment groups (for any of the two tested doses of Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$), the LS mean of the back transformed difference Dysport tested dose - Dysport $2 \mathrm{U} / \mathrm{kg}$) and the associated p-values. Additionally, for all other effects taken into account in the ANOVA the respective type III test p-value will be presented.
The $\mathrm{SAS} ®$ code for this model is as follows:
proc mixed data $=<x x x>$;
class Treatment age_range BTX_stratum centre;
model rank_score = Treatment age_range BTX_stratum centre / solution cl;
/* contrast analyses */
estimate 'Dysport $16 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}$ ' Treatment -1 0 1/cl;
estimate 'Dysport $8 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}$ ' Treatment -1 $10 / \mathrm{cl}$;
/* Adjusted means and 95\% CI by treatment group */
1smeans Treatment/ cl ;
ods output SolutionF $=$ SolutionF Tests3 $=$ Tests 3
Estimates $=$ Estimates LSMeans $=$ LSMeans;
run;
quit;
The second secondary efficacy endpoint is the mean GAS score at Treatment Cycle 1, Week 6. This endpoint will be analysed using an ANOVA on the GAS score. This model will include treatment group, the two stratification factors and the pooled centre as fixed covariates. Same output will be presented as for mean PGA.

3.2.2.4 Sensitivity Analyses for the First Secondary Efficacy Endpoint

Robustness (Proportional Odds Model)

To check the robustness of the rank ANOVA analysis, a sensitivity analysis will be performed using the POM. This analysis will be applied to the ordered PGA categorical responses and the resulting odds ratio measures the relative probability of a better PGA response on Dysport (8 and $16 \mathrm{U} / \mathrm{kg}$) as compared to Dysport $2 \mathrm{U} / \mathrm{kg}$. An odds ratio >1 for Dysport (8 and $16 \mathrm{U} / \mathrm{kg}$) versus Dysport $2 \mathrm{U} / \mathrm{kg}$ indicates a positive treatment effect in favour of Dysport (8 and $16 \mathrm{U} / \mathrm{kg}$), and an odds ratio <1 indicates a treatment effect in favour of Dysport $2 \mathrm{U} / \mathrm{kg}$. This model will include treatment group, the two stratification factors (age range and BTX treatment naive status at baseline) and the pooled centre as fixed covariates. The odds ratios will be presented together with their $95 \% \mathrm{CI}$ and the associated p -value. Additionally, for all other effects taken into account in the POM, the respective type III test p -value will be presented.
The following SAS $^{\circledR}$ code will be used to compare the Dysport ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) versus Dysport $2 \mathrm{U} / \mathrm{kg}$.
proc logistic data $=<\mathrm{xxx}\rangle$ order $=$ internal;
class Treatment (ref 'Dysport $2 \mathrm{U} / \mathrm{kg}$ ') age_range BTX_stratum centre /
param $=$ ref;
model score $($ descending $)=$ Treatment age_range BTX_stratum centre / clodds
$=$ wald;
oddsratio 'Treatment' Treatment / cl wald;
/* contrast analyses */
contrast 'Dysport $16 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}^{\prime}$ Treatment $10 /$ e estimate $=$ exp;
contrast 'Dysport $8 \mathrm{U} / \mathrm{kg}$ versus Dysport $2 \mathrm{U} / \mathrm{kg}^{\prime}$ Treatment $0 \mathrm{l} /$ e estimate $=$ exp;
/* p -values and odds ratio by treatment group */
ods output Nobs $=$ Nobs Oddsratioswald $=$ Oddsratios Contrastestimate $=$ Contrasts Type3 $=$ Type3 ConvergenceStatus $=$ convstat CumulativeModelTest $=$ Propval;
run;
quit;
In addition, a summary table will present the number and percent of subjects within each response category at Week 6 by treatment group.

Missing Values

In the view of registration in US only, two sensitivity analyses of the first secondary efficacy endpoint will be performed on the population of all randomised subjects in order to assess the impact of missing data on the conclusion. Details are provided in section 3.2.4.1.

3.2.2.5 Tertiary Efficacy Analysis

For tertiary efficacy endpoints summary tables will present descriptive statistics across all treatment cycles for fixed dose Treatment Cycle 1 as well as for repeat Treatment Cycles. For fixed dose Treatment Cycle 1 tertiary efficacy endpoints will be analysed in addition according to their scale (categorical or continuous), using ANCOVA/ANOVA on the rank, ANCOVA or Logistic regression for Treatment Cycle 1 up to Week 16 (inclusive). For any additional visits of Treatment Cycle 1 (any visits after Week 16) and also for all analyses by repeat Treatment Cycle, only descriptive statistics will be performed.
In the following list, the term 'all post-treatment visits' refers to data from each visit at each treatment cycle (Treatment Cycles 1, 2, 3 and 4), unless it is specifically stated that it relates only to visits from the fixed dose Treatment Cycle 1. Also where the term 'except Week 6' is utilised for analyses of Treatment Cycle 1, it only means that this is already a specified primary or secondary endpoint, not that it will not be analysed.

- Mean change from Baseline to all post-treatment visits of Treatment Cycle 1 (except Week 6) in MAS score in the Treatment Cycle 1 PTMG: ANCOVA model on ranked changes with treatment group, the baseline MAS score, the two stratification factors (age range and BTX naïve or non-naïve status as assessed at baseline), and the centre as fixed effects.
- Mean change from Baseline to all post-treatment visits in MAS score in each injected muscle group (elbow, wrist and finger flexors) of the study limb: ANCOVA model on ranked changes with treatment group, the baseline MAS score in the injected muscle group, the two stratification factors, and the centre as fixed effects for Treatment Cycle 1; descriptive statistics for analyses by Treatment Cycle 1 to 4 .
- Mean PGA score at all post-treatment visits (except Treatment Cycle 1, Week 6): ANOVA model on the rank with treatment group, the two stratification factors, and the centre as fixed effects for Treatment Cycle 1; descriptive statistics for analyses by Treatment Cycle 1 to 4 .

- Mean GAS score at all post-treatment visits (except Treatment Cycle 1, Week 6): ANOVA model on the GAS score with treatment group, the two stratification factors, and the centre as fixed effects for Treatment Cycle 1; descriptive statistics for analyses by Treatment Cycle 1 to 4.

- Mean change from Baseline to both post-treatment PedsQL scores (Generic core scale and CP module); ANCOVA model with treatment group, the baseline score, the two stratification factors, and the centre as fixed effects for Treatment Cycle 1; descriptive statistics for analyses by Treatment Cycle 1 to 4.

For ANCOVA/ANOVA models on the rank the same output will be presented as described in 3.2.2.1 and 3.2.2.3.
In ANCOVA models on the non-transformed original values an estimate of the magnitude of the difference between the treatment groups (Least Square Means Difference Dysport dose ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) Dysport $2 \mathrm{U} / \mathrm{kg}$) will be presented
together with a p-value and a $95 \% \mathrm{CI}$ to illustrate the precision of the estimated treatment groups' difference. Least Square Means together with their SE and 95% CI will also be reported in each treatment group. Additionally, for all other effects but the centre taken into account in the ANCOVAs, the respective type III test pvalue will be presented.
Logistic regression analyses will be run using the PROC LOGISTIC procedure with a Type III test. The odds ratios between the treatment groups (Dysport dose ($8 \mathrm{U} / \mathrm{kg}$ and $16 \mathrm{U} / \mathrm{kg}$) / Dysport $2 \mathrm{U} / \mathrm{kg}$) will be presented together with a p-value and a 95% CI.

Additionally, for all other effects but the centre taken into account in the logistic regression models, the effect estimate, its $95 \% \mathrm{CI}$ and the respective p -value for the significance testing will be presented.
The $\mathrm{SAS}{ }^{\circledR}$ code for these models is as follows:
proc logistic data=data-set;
class Treatment (ref 'Dysport $2 \mathrm{U} / \mathrm{kg}$ ') age_range BTX_stratum centre; model response_variable (event='1') = Baseline Treatment age_range BTX_stratum centre/ clodds=wald; oddsratio 'Treatment' Treatment / cl=wald;
run;
quit;
The absence of responders (or of non-responders) in a given centre can lead to convergence issues. If a convergence issue appears, the logistic regression model won't take into account the parameter centre.
The centre effect will be described in tables showing the proportion of responders and non-responders by centre.
In addition, a shift table from baseline to each visit will be presented for the MAS score and TS spasticity grade (Y).
For the GAS responder an analysis for the primary goal will also be performed. A subject will be defined as a responder if their primary goal (identified as "very important") reaches an outcome of 0 (expected outcome) or higher at any time posttreatment during the treatment cycle. The proportion of GAS responders will be evaluated using a logistic regression model with treatment group, age range, BTX naïve or non-naïve status as assessed at baseline and the centre as explanatory variables, using the LOGISTIC code above. The responder analysis will be repeated on the number of subjects who reached for their primary goal an outcome of 1 (somewhat more than expected outcome) or higher as well as an outcome of 2 (much more than expected outcome).
A responder analysis will also be performed on each of the goals, using those subjects who selected the specified goal (regardless of whether it was their primary goal) and the rating of the goal during the treatment cycle. Due to the low number of subjects per goal, only descriptive statistics will be provided.
For each goal, the number and percentage of subjects with each rating will be tabulated by baseline importance and difficulty and in total. The number and percentage of subjects choosing each goal at baseline of each Treatment Cycle will be tabulated by importance and difficulty and in total for each Treatment Cycle.

3.2.2.6 Figures on Efficacy Endpoints

Figures will show the LS means and 95% CIs for each treatment group, at each scheduled assessment up to Week 16, for MAS, PGA, GAS, CCI and each PedsQL score. Forest plots of effect size by subgroups (Section 3.2.2.7) will also be provided for the primary efficacy endpoint. Histograms will present the number and percent of subjects within each MAS change category and within each PGA response category at Week 6 by treatment group.

3.2.2.7 Subgroup Efficacy Analyses and Covariates

Covariates used in models of efficacy analysis will be the same as those mentioned in sections 3.1.1 and 3.1.2.
The model will be run including the centre effect, which will be removed if the model does not converge.
The following additional subgroup analyses will be conducted on the MAS and the PGA of the mITT population:
Primary (MAS) and First Secondary (PGA) Efficacy Endpoint

- Age group (2 to 9 years and 10 to 17 years)
- BTX status at baseline (naïve or non-naïve)
- \quad Sex (Male or Female).

MAS and PGA at Treatment Cycle 1 Week 16

- Physiotherapy/Occupational therapy status at Week 16 (No/Yes): Subjects without physiotherapy nor occupational therapy before week 16 of Treatment Cycle 1 versus subjects with physiotherapy and/or Occupational therapy between Baseline and Week 16 of Treatment Cycle 1.
Statistical analyses will include:
- A summary table of raw values and changes from baseline to all visits, by treatment group and overall, in each subgroup separately.
- A rank ANOVA model (score= subgroup_indicator + treatment + BTX stratum + age group + interaction subgroup $*$ treatment + centre) or rank ANCOVA model (change $=$ baseline + subgroup_indicator + treatment + BTX stratum + age group + interaction subgroup * treatment + centre).
Following contrast analyses for reporting will be performed in case the p -value from the interaction term is deemed statistically significant (lower than 0.1):
i. The Least Square Mean (LSMeans) of change from baseline in each subgroup, for each treatment group separately, together with its 95% CI,
ii. Difference in LSMeans in each subgroup between each active dose and Dysport $2 \mathrm{U} / \mathrm{kg}$, together with its $95 \% \mathrm{CI}$ and the p -value of the test H_{0} :Adjusted Mean Dysport 8 and $16 \mathrm{U} / \mathrm{kg}$) $=$ Adjusted Mean Dysport $2 \mathrm{U} / \mathrm{kg}$.
The ANOVA or ANCOVA models will only be run if there are at least 20 subjects in at least one treatment group. 20 subjects was deemed to be a reasonable number of subjects in order for the analyses to be considered to be meaningful rather than being calculated using any formal statistical methodology.

3.2.3 Safety

All safety data will be included in the safety data listings and summary tables will be based on the safety population. Across all treatment cycles summary safety tables
will be presented by the dose received in the study limb in the specified Treatment Cycle. For the fixed dose Treatment Cycle 1 selected tables will also be presented by exact dose received. For analyses over repeat treatments by Treatment Cycle, selected tables will also be presented by total body dose received.
Safety tables will be presented by the treatment groups specified in Section 3.2.1.2.

3.2.3.1 Adverse Events

For AEs, the sponsor will use the latest version of Medical Dictionary for Regulatory Activities (MedDRA) in effect within the sponsor company at the time of database lock.
Adverse events will be recorded from time of informed consent until the end of study and all AEs will be considered for inclusion in the analyses.
All AEs reported during the study will be presented in a listing which will be sorted by subject identifier (subject ID), the AE start and end date, primary system organ class (SOC), preferred term (PT) and verbatim text. TEAEs will be assigned to the last Study Treatment prior to the onset of the AE. The Treatment Cycle, the Study Limb Dose, and the Total Body Dose at which each AE started will be included.
Serious AEs, AEs leading to withdrawal, death, and TEAEs will be flagged in the AE listings.
Listings of all serious adverse events (SAE), AEs leading to withdrawal and deaths reported during the study will also be presented, using the same sort order. Listings of AEs of special interest will also be provided, for remote spread of effects as well as for hypersensitivity reactions.
A TEAE is defined as any AE that occurs during the treatment phase of the study if:
(1) it was not present prior to receiving the first intake of study medication, or
(2) it was present prior to receiving the first intake of study medication but the intensity increased during the treatment phase of the study.
(3) it was present prior to receiving the first dose of study treatment, the intensity is the same but the drug relationship became related during the active phase of the study.
A TEAE that occurs under a particular treatment cycle and worsens in intensity under a different treatment cycle will be considered as treatment emergent under the two treatment cycles. In the event of another occurrence of a TEAE with a change in intensity under a different treatment cycle, the subject will also be counted in that different treatment cycle. A given AE will be assigned to the dose received prior to the onset of the AE in the designated treatment cycle.
Adverse events of special interest (AESIs) for Dysport are TEAEs that suggest a possible remote spread of effect of the toxin or events suggestive of hypersensitivity like reactions. TEAEs due to possible remote spread of the effects of Dysport will be identified using the list of MedDRA PTs compatible with the mechanism of action of BTX-A and based on the recommendations from the Committee for Medicinal Products for Human Use (CHMP) and the Food and Drug Administration (FDA). TEAEs potentially representing hypersensitivity reactions will be identified using the Standardised MedDRA Query (SMQ) (narrow search query) for hypersensitivity reactions. A list of MedDRA PTs, used to identify any potential AESI, is provided in Appendix 8.4 of the SAP.

All TEAEs identified using the search strategy described above will be medically evaluated during the study, before the database lock and unblinding, by the sponsor to identify events which could possibly represent 'remote spread of effect of toxin', or which are suggestive of 'hypersensitivity reactions' due to study treatment administration. Cases will be excluded if they are confounded by presence of alternative clinical etiologies (medical history, concomitant medication or diagnosis which could account for the symptoms); if they are considered to be local effects instead of distant spread as judged by the site of injection; the time period between the last study treatment administration and event onset is not in accordance with the expected mechanism of action; or due to insufficient information/evidence to make an assessment.
In the TLFs, only the final list of AESIs confirmed by the sponsor as "a possible remote spread event" or "hypersensitivity reactions" will be taken into account.

Across all Treatment Cycles 1, 2, 3, and 4 an overall summary table of all AEs will be presented by treatment group for study limb dose (administered in the specified Treatment Cycle using the dose groups specified in Section 3.2.1.2), summarising:

- Any AE
- Any TEAE
- Any Non Serious TEAE
- Intensity of TEAEs (Severe, Missing, Moderate, Mild)
- Causality of TEAEs (Related, Unknown/Missing, Not related)
- Causality and intensity of TEAEs (Related and Severe, Related and Missing, Related and Moderate, Related and Mild, Missing and Severe, Missing and Missing, Missing and Moderate, Missing and Mild, Not related and Severe, Not related and Missing, Not related and Moderate, Not related and Mild)
- Any TEAE leading to withdrawal (TEAEWD)
- Any TEAE leading to death
- Any SAEs

In the above table, intensity, causality and causality combined with intensity of TEAEs, subjects will be presented in all the categories of intensity and causality in which their TEAE(s) have been reported.
Presentation by study limb dose will also include overall summary of all AEs for all treatment cycles combined.

In addition to the above, the following TEAE summary tables will be presented by treatment group for study limb dose across all treatment cycles (using the dose groups specified in Section 3.2.1.2 as administered in the specified Treatment Cycle):

- TEAEs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- TEAEs by intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEs by causality with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT

SAP Final Version 2.0: 19 Oct 2018

45/108

- SAEs with the number and percentage of subjects with SAEs and the number of occurrences by primary SOC and PT
- SAEs by intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- SAEs by causality with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- SAEs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEWDs with the number and percentage of subjects with TEAEWDs and the number of occurences by primary SOC and PT
- TEAEWDs by intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEWDs by causality with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEWDs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- Non serious TEAEs by treatment group, with the number and percentage of subjects with non serious TEAEs and the number of occurrences presented by primary SOC and PT, for all non serious TEAEs occurring for $\geq 5 \%$ of subjects in at least one treatment group at the PT level
- TEAEs by treatment group, with the number and percentage of subjects with TEAEs and the number of occurrences presented by primary SOC and PT, for all TEAEs occurring for $\geq 3 \%$ of subjects and more than 1 subject in at least one treatment group at the PT level
If a subject experiences more than one TEAE within a category (PT or primary SOC) the subject will be counted only once in that category.
In the summary of TEAEs by intensity and causality, in the event of multiple reports of the same PT for a subject, the maximum intensity (severe>missing $>$ moderate $>$ mild) and the most serious causality (related $>$ not related) will be counted.
For all AESIs the following selected tables will be produced by study limb dose group across all treatment cycles 1, 2, 3, and 4:
- Overall summary table of all AESIs
- AESIs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- AESIs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT.

TEAEs for fixed dose Treatment Cycle 1

In addition to the TEAE summary tables by study limb dose described above (including Treatment Cycle 1), the following tables will be produced by study limb dose group for those subjects who received the exact dose in the study limb (see Section 3.2.1.2). These tables will be provided for (TE)AEs at Treatment Cycle 1.

- Overall summary table of all AEs
- TEAEs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT

SAP Final Version 2.0: 19 Oct 2018

46/108

- TEAEs by intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEs by causality with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- SAEs with the number and percentage of subjects with SAEs and the number of occurrences by primary SOC and PT
- TEAEWDs with the number and percentage of subjects with TEAEWDs and the number of occurrences by primary SOC and PT
- TEAEs by treatment group, with the number and percentage of subjects with TEAEs and the number of occurrences presented by primary SOC and PT, for all TEAEs occurring for $\geq 3 \%$ of subjects and more than 1 subject in at least one treatment group at the PT level.

AESIs for fixed dose Treatment Cycle 1

In addition to the AESI summary tables by study limb dose (including Treatment Cycle 1), the following tables will be for those subjects who received the exact study limb dose. These tables will be provided for AESIs at Treatment Cycle 1.

- Overall summary table of all AESIs
- AESIs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- AESIs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT.

TEAEs for Repeat Treatment

Summary tables by study limb dose across all Treatment Cycles $1,2,3$, and 4 will be provided as described above.
For Treatment Cycles 2, 3, and 4 the following tables by study limb dose will also be produced separately for subjects who received injections in study limb only and subjects who received injections in study limb plus any other limb (non-study upper limb and/or lower limb(s)):

- Overall summary table of all TEAEs
- TEAEs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- TEAEs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- SAEs with the number and percentage of subjects with SAEs and the number of occurrences by primary SOC and PT
- TEAEWDs with the number and percentage of subjects with TEAEWDs and the number of occurrences by primary SOC and PT
Additionally, TEAEs by study limb dose across all Treatment Cycles 1, 2, 3, and 4 will be summarized by class of time elapsed from the last Dysport Dose injected to the event onset:
- 1-28 days (first 4 weeks)
- 29-56 days (from >4 to ≤ 8 weeks)
- $57-84$ days (from >8 to ≤ 12 weeks)

SAP Final Version 2.0: 19 Oct 2018

47/108

- 85-112 days (from >12 to ≤ 16 weeks)
- 113-140 days (from >16 to ≤ 20 weeks)
- $\quad>140$ days (>20 weeks).

Futhermore, the following TEAE tables for each Treatment Cycle will be produced by total body dose administered in the specified Treatment Cycle using the dose groups specified in Section 3.2.1.2.:

- Overall summary table of all AEs
- TEAEs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- TEAEs by intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEs by causality with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- TEAEs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT
- SAEs with the number and percentage of subjects with SAEs and the number of occurrences by primary SOC and PT
- TEAEWDs with the number and percentage of subjects with TEAEWDs and the number of occurrences by primary SOC and PT
- TEAEs by treatment group, with the number and percentage of subjects with TEAEs and the number of occurrences presented by primary SOC and PT, for all TEAEs occurring for $\geq 3 \%$ of subjects and more than 1 subject in at least one treatment group at the PT level.
For Treatment Cycles 2, 3, and 4 the following tables by total body dose will also be produced for subjects who received injections in study limb plus any other limb (non-study upper limb and/or lower limb(s)):
- Overall summary table of all TEAEs
- TEAEs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- TEAEs by intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT.

AESIs for Repeat Treatment

In addition to the summary tables by study limb dose across all Treatment Cycles 1, 2, 3, and 4 the following AESI tables for each Treatment Cycle will be produced by total body dose administered in the specified Treatment Cycle using the dose groups specified in Section 3.2.1.2:

- Overall summary table of all AESIs, including also an overall summary of all AEs for all treatment cycles combined
- AESIs with the number and percentage of subjects and the number of occurrences presented by primary SOC and PT
- AESIs by causality combined with intensity with the number and percentage of subjects and the number of occurrences by primary SOC and PT-

3.2.3.2 Physical and Neurological Examinations

Clinically significant changes in the physical examination findings (abnormalities) will be recorded as AEs. Details of each neurological examination will be listed, by subject ID.

3.2.3.3 Laboratory Data

For clinical laboratory safety tests (clinical chemistry including serum alkaline phosphatase total and bone isoenzyme, and HbA 1 c), all data will be listed, in standard international (SI) units, by subject ID and assessment visit, and all abnormal values will be flagged (High [H], Low [L], or clinically significant [C]).
A listing will be presented of all values for a subject with at least a clinically significant abnormal value.
A separate listing of normal ranges for SI units will be provided by gender and age where relevant.
Baseline will be defined as the last measurement collected prior to receiving the initial study treatment, Treatment Cycle 1 on Day 1. For the fixed dose Treatment Cycle 1 Baseline and Week 16 will be presented by Study Limb Dose. For Repeat Treatment Baseline and EOS/EW will be presented by Total Body Dose and subjects will be assigned to the treatment group according to the last study treatment received.
Summary statistics for all laboratory parameters by treatment group will be presented at each scheduled assessment (Baseline, Treatment Cycle 1 Week 16, and EOS/EW) for actual values and changes from baseline. The number and percentage of subjects with low, normal or high values will also be presented, for each treatment group, at each scheduled assessment. In addition, shift from Baseline tables of the number and percentage of subjects with low, normal or high values will be presented for each treatment group, at each scheduled assessment, and an overall summary of shift from baseline throughout the study will also be provided.
Results from urine and serum pregnancy tests will be listed by subject ID and assessment visit.

3.2.3.4 Vital Signs

Vital signs data (systolic and diastolic BP and HR) will be presented in a listing which will be sorted by subject ID and assessment visit. All abnormal values will be flagged (High (H) or Low (L)).
Baseline values for each treatment group will be defined as the last vital signs measurement collected prior to receiving the initial study treatment on Day 1 of Treatment Cycle 1. For the fixed dose Treatment Cycle 1 the summary table will be presented by Study Limb Dose. The tables for Repeat Treatment will be presented by Total Body Dose and subjects will be assigned to the treatment group in the designated Treatment Cycle according to the study treatment received in that cycle. For each treatment group, summary statistics will be presented for each scheduled assessment visit, for both actual values and changes from baseline. The number and percentage of subjects with low, normal or high values will also be presented, for each treatment group, at each scheduled assessment. In addition, shift from baseline to tables of the number and percentage of subjects with low, normal or high values will be presented for each treatment group, at each scheduled assessment.
The criteria thresholds for abnormal values are presented in section 8.1.

SAP Final Version 2.0: 19 Oct 2018

49/108
In addition, body mass index (BMI) will be calculated using age in months at the time of the height and weight assessments. This will be included in the listing, and a shift from baseline table will present the number and percentage of subjects in Less than the 5th percentile, 5th Percentile to less than the 95th percentile, and Equal to or greater than the 95 th percentile categories for each treatment group, at each scheduled assessment. The criteria for BMI normal ranges are presented in section 8.2.

3.2.3.5 Electrocardiogram

All available ECG data and clinical interpretations will be listed by subject ID, treatment group, and assessment visit.
Subjects will have a set of three ECG recordings taken at Screening, Week 6 of Treatment Cycle 1 and EOS/EW. For each quantitative parameter (QTcB, QTcF, QT, PR, HR, RR, and QRS) the average of these recordings will be calculated. The average measurements will be used in all summary tables. In case of missing data for one or two ECG recordings of the three expected, the average will be performed on the values available.
In the listings the individual results (raw data) and the associated calculated average will be presented.
Baseline will be defined as the average of the ECG recordings collected at the last ECG assessment prior to receiving the initial study treatment, on Day 1 of Treatment Cycle 1. For fixed dose Treatment Cycle 1 the summary table will be presented by Study Limb Dose. For Repeat Treatment Baseline and EOS/EW will be presented by Total Body Dose and subjects will be assigned to the treatment group based on the dose received in the last Treatment Cycle.
Summary statistics of all ECG parameters (except QRS axis) will be presented by treatment group for each scheduled assessment visit, for both actual values and changes from baseline.
For interpretation of clinical significance (within normal limits; abnormal, not clinically significant; abnormal, clinically significant; not evaluable), a frequency table will be presented, by treatment group, at each scheduled assessment visit. A shift table from baseline to the Treatment Cycle 1 Week 6 and to the EOS/EW visit will also be presented.
Additionally, a frequency table will be presented for the worst value of all post-dose assessments (abnormal, clinically significant > abnormal, not clinically significant > not evaluable $>$ within normal limits). The number and percentage of subjects with duration of QT/QTc interval within the following three ranges of interest will also be presented, for both Fridericia's and Bazett's methods, by treatment group, for each scheduled assessment visit and an overall summary for any post-baseline visit:

- $\leq 450 \mathrm{msec}$
- >450 to 480 msec
- >480 to 500 msec
- $>500 \mathrm{msec}$.

The number and percentage of subjects with an increase from baseline in the QT/QTc interval of $>30-60 \mathrm{msec}$ and $>60 \mathrm{msec}$ will also be presented, for both Fridericia's and Bazett's methods, by treatment group, for each scheduled postbaseline assessment visit and an overall summary for any post-baseline visit.

An additional listing will display any QT/QTc intervals that fall within any of the ranges of interest for either absolute value or increase from baseline as described above.
The number and percentage of subjects with any of the following ECG abnormalities will be provided by treatment group for each scheduled assessment visit:

- New morphologies
- Arrhythmias
- Second and third degree heart block
- ST segment abnormalities
- T-wave abnormalities
- U-wave abnormalities
- Myocardial infarction
- Right bundle branch block
- Left bundle branch block
- Other conduction abnormalities
- Others (except abnormalities described above).

3.2.3.6 Presence of Antibodies to Botulinum Toxin Type A

See section 3.2.11 for details of the analyses for BTX-A-Abs.

3.2.3.7 Subgroup Safety Analyses

Additional subgroup analyses will be conducted on the Safety population across all treatment cycles for study limb dose and total body dose (using the dose groups specified in Section 3.2.1.2 as administered in the specified Treatment Cycle):

- Overall AE summary table
- Summary table by SOC and PT for TEAEs
- Summary table by SOC and PT for SAEs and TEAEWDs
- Summary table by SOC and PT and by intensity for TEAEs
- Summary table by SOC and PT and by causality for TEAEs
- Summary table for all TEAEs occurring for $\geq 3 \%$ of subjects and more than 1 subject in at least one treatment group at the PT level
by:
- \quad Sex (Male or Female)
- \quad Age group (2 9 years or $10 \quad 17$ years)
- Botulinum toxin status (Naïve or Non-naïve)
- BMI category (Less than the $5^{\text {th }}$ percentile or $5^{\text {th }}$ percentile to less than the $95^{\text {th }}$ percentile or equal to/greater than the $95^{\text {th }}$ percentile).
Shift from baseline tables of the number and percentage of subjects with low, normal or high values for alkaline phosphatase and HbA 1 c will be repeated by age group.

3.2.4 Missing Data and Outliers

3.2.4.1 Missing Data

Efficacy

In order to assess the impact of the missing values of the primary efficacy endpoint for the withdrawals between the baseline visit and Treatment Cycle 1, Week 6 visit, the primary analysis performed on the assessed values of the primary efficacy endpoint will be completed with a sensitivitiy analysis performed on the population of all randomised subjects. Within that population, any missing assessment on the MAS at Treatment Cycle 1, Week 6 visit will be imputed with the assessment on the MAS at the baseline visit (conservative approach). In case any baseline assessment on the MAS is missing, the baseline assessment is imputed with the average baseline assessment on all randomised subjects.
The results of the sensitivity analysis will be taken into account to assess the robustness of the results of the primary analysis.

- In view of registration in the US only

In order to assess the impact of the missing values of the first secondary efficacy endpoint for the withdrawals between the baseline visit and the Treatment Cycle 1, Week 6 visit as well as for subjects not assessed in the mITT population, the primary analysis performed on the assessed values of the first secondary efficacy endpoint will be completed with the following two sensitivity analyses performed on the population of all randomised subjects:

- First sensitivity analysis: any missing assessment on the PGA at Treatment Cycle 1, Week 6 visit will be imputed with the assessment 'markedly worse' (intermediate conservative approach)
- Second sensitivity analysis: any missing assessment on the PGA at Treatment Cycle 1, Week 6 visit for a subject in a higher dose Dysport group will be imputed with the assessment 'markedly worse' and any missing assessment on the PGA at Treatment Cycle 1, Week 6 visit for a subject in the low dose Dysport group will be imputed with the assessment 'markedly improved' (most conservative approach).
The results of the two sensitivity analyses will be taken into account to assess the robustness of the results of the primary analysis.

Safety

If a value required a retest (for laboratory values, vital signs and ECG) the closest non-missing reliable value to the scheduled visit will be used in the summary tables. An assessment will be considered reliable if it is performed without any technical problem and if the result is within the range of plausible values.
For adverse events with missing information for the intensity and causality the value will not be replaced and will be summarised as a separate category.

All data

If there is a significant number of missing values for a subject (or if there is confirmed data appearing spurious), a decision will be made following consultation with the sponsor regarding the handling of these data in summaries, prior to breaking the blind.
Any repeat or additional assessments performed will be included in the individual subject data listings.
All issues relating to missing data will be discussed at the BDRM.

3.2.4.2 Missing or Incomplete Dates

In all listings, missing or incomplete dates should be left as they have been recorded. However, for calculation/sorting/assignation based on dates, the following methods will be used:
(1) The most conservative approach will be systematically considered (i.e. if the onset date of an $\mathrm{AE} /$ concomitant medication is missing/incomplete, it is assumed to have occurred during the study treatment phase (i.e. a TEAE for AEs) except if the partial onset date or the stop date indicates differently).
(2) Similarly, if the onset time of an AE is missing then a conservative approach will again be taken, so that it is assumed to be a TEAE unless the onset date, stop date, or stop time indicates differently.
(3) A missing/incomplete date of medical history or disease diagnosis will be assumed to have occurred before any study treatment.
(4) A medication with partial start and stop dates will be considered as concomitant treatment, except if the partial dates indicate differently.
(5) Where this is possible, the derivations based on a partial date will be presented as superior inequalities (i.e.: for an AE started in FEB2004 after the administration performed on 31JAN2004, the days since last dose will be " ≥ 2 ", similarly the duration of ongoing AEs or medication will be " $\geq x x$ " according to the start and last visit dates).
(6) If an AE or SAE onset date is partial or missing, the event will be allocated to the first treatment where onset could have occurred (taking into account date and time stopped).
(7) If the start date of a medication is partial or missing, the medication will be assigned to the most recent treatment received on or before the medication start date (taking into account date stopped).

3.2.4.3 Outliers

In the event of any remaining unresolved data issues at the time of the BDRM, their impact on the statistical analyses will be assessed and any corrective action will be implemented prior to unblinding.

3.2.5 Subject Disposition

All disposition data will be included in the subject disposition listings and all summary tables for subject disposition will be based on the Randomised population, unless otherwise specified.
A listing of all visit assessment dates (relative days) will be presented by subject ID and Treatment Cycle. Subject disposition data (including date of informed consent/screening/randomisation/first study drug administration, last Treatment Cycle/last visit/status at end of study, and study duration will be listed by subject ID.
An overall summary of subject disposition by treatment group of Treatment Cycle 1 will be displayed for all screened subjects with the numbers and percentage of subjects screened, screen failures, randomised, randomised and treated, and the size of the mITT, PP and Safety populations. The numbers and percentage of subjects received study medication, completed Treatment Cycle, and withdrawn from the Treatment Cycle will be displayed by treatment group of each Treatment Cycle (1, 2, 3 and 4).

A summary table will also display the count and percent of subjects by country, country/centres (and country/pooled centres if needed) by treatment group of Treatment Cycle 1.
For the mITT population, a summary table will present by treatment group the number of subjects assessed at each Treatment Cycle and scheduled visit.
Counts and percents of subjects with any major protocol deviation and any major protocol deviation impacting the PP population will be tabulated by treatment group. Reasons for exclusion from the Safety, mITT and PP populations will be presented in summary tables by treatment group of Treatment Cycle 1 for the randomised and treated subjects.
All major protocol deviations identified prior to unblinding together with the reasons for exclusion from the analysis populations will be listed by subject ID. Also, any major protocol deviations impacting the PP population will be presented in an additional listing.
In addition to above, listings will present screening failures, violated inclusion criteria and fulfilled exclusion criteria, and randomisation information by subject ID. Screening failures and study withdrawals will also be listed by subject ID.
A summary table will present the overall study duration overall and by treatment group.

3.2.6 Withdrawals

All information on subject withdrawals will be included in the listings and all summary tables for subject withdrawals will be based on the randomised population. Discontinued subjects will be listed and a summary table of the number and percentage of subjects who withdrew from the study and the reasons for withdrawal will be presented by treatment group and overall and for each Treatment Cycle.

3.2.7 Demographic and Baseline Characteristics

All demographic data and data on baseline characteristics will be included in the listings and summary tables, listings will be based on the Randomised Population, tables will be based on the mITT population. Summary tables will be presented by treatment group of Treatment Cycle 1.
The overall summary table will be repeated for the Safety population. It will also be repeated for the PP population.
All demographic and baseline characteristics will be listed by subject ID. This includes:

- Demographics
- Neurological examinations
- Gross motor function classification system
- Tanner grading scale

Descriptive statistics will be provided for the following demographic and baseline characteristics, by treatment group:

- \quad Sex (Male or Female)
- Race (Asian, Black / African American, Caucasian / White, Native Hawaiian / Other Pacific Islander, American Indian / Alaska Native, or Multiple Race)
- Ethnicity (Hispanic / Latino, Not Hispanic / Latino)
- Age (years)
- \quad Age group (2 9 years or $10 \quad 17$ years)

SAP Final Version 2.0: 19 Oct 2018

- Height (cm)
- Weight (kg)
- Body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
- Body mass index at baseline in categories (Less than the 5th percentile, 5th Percentile to less than the 95 th percentile, Equal to or greater than the 95 th percentile)
- Botulinum toxin status (Naïve or Non-naïve)
- Tanner grading scale (I, II, III, IV, or V)
- Baseline MAS score in the PTMG
- Baseline original MAS score in the PTMG ($0,1,1+, 2,3,4$)
- Baseline MAS score in the elbow flexors
- Baseline original MAS score in the elbow flexors ($0,1,1+, 2,3,4$)
- Baseline MAS score in the wrist flexors
- Baseline original MAS score in the wrist flexors ($0,1,1+, 2,3,4$)
- Baseline MAS score in the finger flexors
- Baseline original MAS score in the finger flexors ($0,1,1+, 2,3,4$)
- Geographical location (US or non-US)
- Gross motor function classification system level (1, 2 or 3)

The descriptive statistics will also be repeated, on the mITT population, by each of the following subgroups:

- \quad Sex (Male or Female)
- Age group (2 9 years or $10 \quad 17$ years)
- Botulinum toxin status (Naïve or Non-naïve)
- Geographical location (US or non-US)

Demographic and baseline characteristics will not be compared between treatment groups by formal statistical testing and only 95% CIs will be calculated.

3.2.8 Medical and Surgical History

All medical and surgical history data will be included in the listings and summary tables, listings will be based on the Randomised population and tables will be based on the mITT population.

3.2.8.1 Cerebral Palsy History

Descriptive statistics will be provided for the following:

- Type of paralysis (Hemiparesis, Paraparesis, Diparesis or Tetraparesis)
- Diagnosis of CP as defined by Rosenbaum [2] (Yes or No)
- Presence of severe athetoid or dystonic movements in the targeted upper limb (Yes or No)
- Intensity of athetoid or dystonic movements (Mild, Moderate or Severe)
- Hypertonia assessment tool responses (Positive or Negative responses to seven assessments designed to measure dystonia, spasticity and rigidity)
- Manual ability classification system level (MACS or mini-MACS) (1, 2, 3, 4 or 5).
Listings will present all data collected on subjects' CP history (including Hypertonia assessment tool [3] and MACs (or mini-MACS)) for the Randomised Population, by subject ID.

3.2.8.2 Other Significant Medical and Surgical History

Other significant medical and surgical history will be collected on the electronic case report form (eCRF), and will be coded using MedDRA.
Listings will present all data collected by subject ID, primary SOC, PT and verbatim text.
For all significant medical and surgical history a frequency table of the number and percentage of subjects will be provided by primary SOC and PT, for each treatment group of Treatment Cycle 1.

3.2.9 Study Exposure/Treatment Profile

All data on subject exposure will be included in the listings. A per subject listing will present for each study treatment the cycle duration (in days), study limb dose, non-study upper limb dose, lower limb dose, and total body dose in U/kg. Details of the study drug preparation and administration (date / time of administration, muscle targeting technique, any difficulties during drug administration, muscles injected by limb, volume and dose (U / kg) administered) will be presented in a separate listing. The PTMG will be flagged.
Tables will be based on the safety population.

3.2.9.1 Summary of Exposure to IMP Across the Study

Across the study, irrespective of number of study treatments received, the following will be summarised by dose group using the study limb dose (as administered in Treatment Cycle 1, see Section 3.2.1.2 for dose groups):

- Summary statistics of duration of IMP exposure from initial Study Treatment 1 to EOS/EW
- Number and percent of subjects with duration between Study Treatment 1 and EOS/EW of:
a) <16 weeks
b) At least $16,22,28$, and >48 weeks.

3.2.9.2 Exposure During Fixed Dose Treatment Cycle 1 and over Repeat Treatments

The following will be summarised by dose group using the study limb dose for the fixed dose Treatment Cycle 1 (as administered in Treatment Cycle 1, see Section 3.2.1.2 for dose groups):

- Summary statistics of duration of treatment interval in weeks between initial Study Treatment 1 and Study Treatment 2, or EOS/EW
- Number and percent of subjects with duration between Study Treatment 1 and Study Treatment 2 or EOS/EW of:
a) <16 weeks
b) At least 16, 22, 28, and >48 weeks.

For Treatment Cycle 2, 3, and 4 corresponding summary statistics will be provided for treatment intervals and durations between Study Treatment 2 and 3 (or EOS/EW), and Study Treatment 3 and 4 (or EOS/EW). Summary tables will be presented by dose group using the study limb dose for Repeat Treatment (as administered in the specified treatment cycle, see Section 3.2.1.2).

3.2.9.3 Summary of Location of Treatment

For each Treatment Cycle (Treatment Cycle 1, 2, 3 and 4) and overall, the number and percent of subjects treated in each of the following categories will be presented
by dose group using the study limb dose (administered in the specified treatment cycle, using the dose groups specified in Section 3.2.1.2):

- \quad Study limb (left or right)
- PTMG (elbow or wrist flexors)
- Study limb only
- Study limb and non-study upper limb
- Study limb and lower limb(s)
- Study limb, non-study upper limb and lower limb(s)

In addition summary statistics will be presented for dose administered to study limb, non-study upper limb, lower limb(s), and total body.
For Treatment Cycle 1 this will only include treatment of the study limb as no other limb could be treated.
The table will be repeated for all subjects having kept the same PTMG throughout the study.
Overall treatment cycles combined, summary statistics will be presented for the dose administered per treatment cycle to study limb, non-study upper limb, lower limb(s), and total body. Additionally, summary statistics will be presented for the average and cumulative dose administered per subject to study limb, non-study upper limb, lower limb(s), and total body.

For each Treatment Cycle (Treatment Cycle 1, 2, 3 and 4) and overall, the following will be summarised, regardless of PTMG:

- Number and percent of subjects treated in each upper limb and lower limb muscle. For the elbow flexors (brachialis and brachioradialis) and wrist flexors (flexor carpi radialis and flexor carpi ulnaris), this will be presented for each muscle as well as for each muscle group. The upper limb muscles will be presented separately for the study and non-study limb.
- Summary statistics for dose administered to each upper and lower limb muscle. The upper limb muscles will be presented separately for the study and non-study limb.
For Treatment Cycle 1 only the study limb will be treated, non-study upper limb and lower limb(s) can be treated at Treatment Cycle 2, 3, and 4.

3.2.9.4 Exposure to Specific Treatments

The following will be presented by study limb dose for subjects who received a Dysport Dose of 8 and/or $16 \mathbf{U} / \mathbf{k g}$.

- Number and percent of subjects receiving
a) At least 1 injection of study treatment
b) At least 2 injections of study treatment
c) At least 3 injections of study treatment
d) 4 injections of study treatment.
- Number and percent of subjects receiving
a) 2 consecutive injections of study treatment
b) 3 consecutive injections of study treatment
c) 4 consecutive injections of study treatment.

In addition for subjects who received a Dysport Dose of at least 8 or at least 16 $\mathbf{U} / \mathbf{k g}$ the number and percent of subjects receiving
a) 2 consecutive injections of study treatment within 6 months
b) 4 consecutive injections of study treatment within 12 months will be presented.

3.2.10 Prior and Concomitant Therapies

All data on prior and concomitant therapies will be included in the listings and summary tables, listings will be based on the Randomised Population and tables will be based on the mITT population.
For prior and concomitant medications the sponsor will use the latest version of the World Health Organisation Drug Dictionary (WHO-DD) in effect within the sponsor company at the time of database lock.

3.2.10.1 Botulinum Toxin History

The following listings will be presented:

- All subjects previously treated with BTX, by subject ID
- All previous BTX treatments, by subject ID, start date, treatment and reason, including all information recorded on the eCRF for each treatment (dose, average frequency of injection and duration)
- All side effects experienced during previous BTX treatment intake, by subject ID.
The number and percentage of subjects who received any previous BTX treatment at least once will be presented by treatment group of Treatment Cycle 1. This table will summarise also the number and percentage of subjects with any significant side effects experienced. Additionally, the indication for treatment will be summarised by treatment group and overall for the mITT population.

3.2.10.2 Other Prior and Concomitant Therapies (Medications and Non-drug Therapies)

Prior and concomitant medications will be coded according to WHO-DD. The therapeutic class will correspond to the second level of the Anatomical Therapeutic Chemical (ATC) code, i.e. corresponding to the first 3 figures.
Prior and concomitant non-drug therapies will be coded using MedDRA.
The date of Day 1 will be used as the cut off date for the definition of a prior and concomitant therapy, so a therapy that finished before Day 1 will be considered as prior and a therapy that started on or after Day 1 will be considered as concomitant. A therapy that started before Day 1 and is continuing will be considered as prior therapy.
Listings will be presented for each of the following:

- Prior and concomitant medications other than for spasticity
- Prior and concomitant non-drug therapies
- Prior and concomitant medications for spasticity.

The medications listings will be sorted by subject ID, start date, therapeutic class, preferred name and verbatim name, whilst the non-drug therapies listing will be sorted by subject ID, start date, SOC, preferred name and verbatim name. Therapies will be flagged as prior or concomitant in the listings. Separate listings will be provided for medications for spasticity and potentially prohibited concomitant medications.
For prior records the treatment group will be assigned based on Treatment Cycle 1.
For each of the above, the number and percentage of subjects will be provided by treatment group, with separate tables for prior and concomitant records, sorted by therapeutic class and preferred name for medications, and by SOC and PT for non-
drug therapies. Prior records will be counted under the dose of Treatment Cycle 1; for concomitant records the treatment group will be the most recent Dysport dose received on or before the medication or non-drug therapy start date for the Treatment Cycle.
Prior and concomitant surgical procedures will be coded using MedDRA. Listings will present all data collected sorted by subject ID, SOC, PT, verbatim text and date of surgery, for prior surgeries and concomitant surgeries separately.
Frequency tables of the number and percentage of subjects will be provided for prior and concomitant surgical procedures separately, by SOC and PT for each treatment group and overall for the mITT population.
The prior and concomitant use of orthoses and/or splints, physiotherapy and occupational therapy, and also home excercises will be summarised in frequency tables of the number and percentage of subjects for each treatment group and overall for the mITT population. Listings will also be produced, by subject ID, start date, affected limb (if applicable), and therapy.

3.2.11 Pharmacokinetics and Antibodies

All results from testing for presence of BTX-A-Abs (binding and neutralising) will be listed, sorted by subject ID and assessment visit. Two additional listings will be provided, one for all subjects with positive binding antibodies post baseline, one for all subjects with positive neutralizing antibodies post baseline. These listings will include the combined information about baseline BTX status, MAS and PGA results, and TEAEs for each subject.
Summary tables for positive/negative BTX-A-Abs with the number and percentage of subjects at baseline and at EOS/EW will be provided for both neutralising and binding antibodies. Additionally a shift table from baseline to the EOS/EW visit will be presented with the number and percentage of subjects separately for binding and neutralising antibodies. EOS/EW records will be counted under the dose of the last Treatment received.

3.2.12 Pharmacodynamics

Not applicable.

3.2.13 Derived Data

3.2.13.1 Age

Subject age (months) will be derived as (screening visit date birth date)/30.4375.

3.2.13.2 Body Mass Index

Body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ will be derived as Weight $(\mathrm{kg}) /(\mathrm{Height}(\mathrm{cm}) / 100)^{2}$ and rounded to the nearest decimal.
Body mass index classes are defined in section 8.2.

3.2.13.3 Therapeutic Class

The therapeutic class for medications corresponds to level 2 of the ATC code and will be derived as the first 3 characters of the ATC code.
The decoding of the therapeutic class will be done from the WHO-Drug Dictionary version in effect within the sponsor company at the time of database lock.

3.2.13.4 Changes from Baseline

Changes from baseline to any visit will be calculated as a difference from baseline (e.g. assessment at the visit assessment at baseline).

3.2.13.5 Adverse Event Duration

If the start and end dates of the AE are identical then " <1 " day will be presented with the duration in hh:mm recorded in the eCRF if it is available. If times are available, the duration will be calculated as (end date/time start date/time) and presented in days hh:mm. If at least one time is missing and if the duration is greater than 24 hours then it will be calculated as (end date - start date) +1 and presented in days. If the recorded end date is CONT. (for continuing), the end date will be listed as "ongoing" and the duration will be approximated as " \geq (last attended visit date start date) +1 " day(s). If the start date or the end date are partial the duration will be presented as a superior inequality " $\geq x x$ " day(s) (i.e.: ≥ 2 where start date $=$ 31JAN2004 and end date $=$ FEB2004 or start date $=$ JAN2004 and end date=01FEB2004]).

3.2.13.6 Adverse Event Episode Duration

If there are several episodes of the same AE then the end date of any episode prior to the last one will be imputed as (start date of the next episode 1 day) and the duration of the AE episode will be calculated using this imputed end date by the following formula (end date of the episode - start date of the episode) +1 .

3.2.13.7 Time since Study Treatment Administration for Adverse Event

If the start date of the AE is identical to the date of the study treatment administration, then" <1 day" will be presented with the time to onset in hh:mm recorded in the eCRF if it is available.
If times are available, the time will be calculated as (start date/time last administration date/time) and presented in days hh:mm.
If at least one time is missing and if the time to onset is greater than 24 hours then it will be calculated as (start date - last administration date) +1 and presented in days. If the start date is partial, the time since study treatment administration will be presented as a superior inequality (i.e.: for an AE started in FEB2004 after the only administration performed on 31JAN2004, the time will be presented as " ≥ 2 " days). If the start date is missing the time since study treatment administration will not be presented.

3.2.13.8 Study Duration (all Treatment Cycles)

Study duration in weeks will be calculated as ((date of last visit attended screening visit date) +1) $/ 7$.

3.2.13.9 Treatment Cycle Duration

For subjects who are retreated at the end of a Treatment Cycle, the Treatment Cycle duration will be calculated, and presented in days, as:
Treatment Cycle Duration $=($ Date of retreatment $) \quad($ Treatment injection date $)$.
For subjects who are not retreated at the end of a Treatment Cycle, the Treatment Cycle duration will be calculated as:
Treatment Cycle Duration $=($ Treatment Cycle last attended visit date $) \quad$ (Treatment injection date) +1 .

3.2.13.10 Study Treatment Exposure (all Treatments)

Study treatment exposure in weeks will be calculated as ((date of last visit attended Treatment Cycle 1 injection date) + 1) / 7.

3.2.13.11 Treatment Cycle Exposure

For any of the Treatment Cycles, the Treatment Cycle exposure in weeks is calculated as:
(Last attended visit date in the Treatment Cycle Treatment Cycle injection date + 1) / 7.

3.2.13.12 Time Intervals between Treatments

For each Treatment Cycle the time interval between treatments will be calculated, and presented in days, as:
(Treatment injection date of the next Treatment Cycle - Treatment injection date) + 1

3.2.13.13 Time to Retreatment

Time to retreatment in weeks will be calculated as ((Date of Retreatment - injection date) +1$) / 7$.
Subjects who are never retreated will be censored at their last recorded visit for the study.

3.2.13.14 Concomitant Therapy Duration

If times are available, the duration of concomitant treatments/physiotherapy etc. will be calculated as (end date/time - start date/time). If at least one time is missing, the duration of concomitant treatments will be calculated as (end date - start date) +1 . If the recorded end date is CONT. (for continuing) then the end date will be listed as "ongoing" and the duration will be approximated as " \geq (last attended visit date start date) +1 " day(s). If the start date or the end date are partial, the duration will be presented as an inequality " $\geq x x$ " day(s) (i.e.: ≥ 2 where start date 31JAN2004 and end date=FEB2004 or start date=JAN2004 and end date=01FEB2004) but if both are partial or one is missing the duration will not be presented.

3.2.13.15 Study Day

Study day will be defined as ' -1 ' for the day prior to first study drug administration and as ' 1 ' for the day of first study drug administration (i.e. day 0 does not exist). If an event/assessment date was on or after first study drug administration then

Study day $=$ event/assessment start date study drug administration date +1 If an event/assessment date was before first study drug administration then

Study day $=$ event/assessment start date study drug administration date.

3.2.13.16 Treatment Cycle Day

If an event/assessment takes place/starts during Treatment Cycle X then the associated Treatment Cycle X day will be defined as:
Treatment Cycle X day $=($ event/assessment start date Treatment Cycle X study drug administration date) +1
For any Treatment Cycle, the Treatment Cycle day is defined as ' 1 ' for the day of study drug administration (i.e. day 0 does not exist).

The Treatment Cycle corresponding to the Treatment Cycle day will also be identified as follows and will be displayed jointly with the Treatment Cycle day in the listings:

- For Treatment Cycle 1: T1
- For Treatment Cycle 2: T2
- For Treatment Cycle 3: T3
- For Treatment Cycle 4: T4

3.2.13.17 Botulinum Toxin Treatment Duration

The duration of BTX treatments will be calculated as (end date - start date) +1. If the start date or the end date are partial, the duration will be presented as an inequality " $\geq x x$ " day(s) (i.e.: ≥ 2 where start date 31JAN2004 and end date $=$ FEB2004 or start date $=$ JAN2004 and end date=01FEB2004) but if both are partial or one is missing the duration will not be presented.

3.2.13.18 Centre Post Pooling

For definition see section 3.2.16.

3.2.13.19 Modified Ashworth Scale

In order to perform the quantitative analyses on the MAS score, the original score ' $1+$ ' will be considered as the derived numeric score ' 2 ' and the higher original numeric scores will be incremented by one.
The below table summarises the correspondences between the original MAS scores and the derived MAS scores.

Table 9 Correspondence between Original MAS Scores and Derived MAS Scores

Original MAS score	Derived MAS score
0	0
1	1
$1+$	2
2	3
3	4
4	5

3.2.13.20 Goal Attainment Scale

The GAS score is calculated as:
$50+\frac{10 \sum_{i=1}^{n} w_{i} x_{i}}{\sqrt{0.7 \sum_{i=1}^{n} w_{i}^{2}+0.3\left(\sum_{i=1}^{n} w_{i}\right)^{2}}}$
Where:

- $\quad x i=$ the rating of the i th goal post-baseline $(-2$: Much less than expected outcome, -1 : somewhat less than expected outcome, 0 : expected outcome, 1 : somewhat more than expected outcome, 2: Much more than expected outcome)
- \quad wi $=$ the weight of the ith goal, calculated as importance * difficulty as defined at baseline.

SAP Final Version 2.0: 19 Oct 2018

- Importance - 0: not at all important, 1: a little important, 2: moderately important, 3: very important
- Difficulty - 0 : not at all difficult, 1 : a little difficult, 2 : moderately difficult, 3 : very difficult
- $\quad \mathrm{n}=$ the number of goals assessed at baseline and post-baseline $[5,6]$

3.2.13.21 Pediatric Quality of Life Inventory ${ }^{T M}$

Each generic core scale (total scale score, physical health summary score and psychosocial health summary score) and each cerebral palsy specific score (Daily Activities, School Activities, Movement and Balance, Pain and Hurt, Fatigue, Eating Activities, and Speech and Communication) is calculated as follows:
(1) Individual item scores are reversed and transformed from a $0-4$ scale to a $0-100$ scale by assigning $0=100,1=75,2=50,3=25$ and $4=0$
(2) Each scale score is calculated as the sum of the transformed individual item scores, divided by the number of non-missing items
Note that a scale score is only calculated if at least 50% of the associated items are non-missing.
The items for each cerebral palsy specific score are identified on the eCRF. The generic core scales comprise the following sections:

- Physical health summary scale: Physical functioning scale
- Psychosocial health summary scale: Emotional, social and school functioning scales
- Total Scale: All scales [14, 15].

3.2.13.22 Electrocardiogram Average Result

For each quantitative ECG parameter the average result at each visit will be calculated as follows:
Average ECG result $=$ sum of non-missing results at that visit / number of nonmissing results at that visit.
3.2.13.23 Type of ECG Abnormality "Other Conduction Abnormalities"

That will gather all types of conduction abnormalities other than Left bundle branch block, Right bundle branch block, 2nd and 3rd degree AV block.

3.2.13.24 Class of ECG Abnormality "Other Abnormalities"

That will gather all abnormalities not categorized as MI, arrhythmia, ST abnormalities, T-wave abnormalities and U-wave abnormalities.

3.2.13.25 New Morphologies

New morphologies will include all morphology abnormalities occurring after baseline that were not present at baseline.
3.2.13.26 Special Interest Flag for $A E$

An AE of special interest is defined as described in section 3.2.3.1.

3.2.14 Visit Windows

All data will be organised and analysed according to the scheduled visits outlined in the protocol. However, if more than one record occurs within the same time interval where only one assessment is expected then the following rule should be applied: for pre-treatment assessments the last non-missing reliable result prior to study drug
administration will be used; for week 2 assessments, the closest non-missing reliable result to the scheduled visit will be used; for post-treatment assessments the closest non-missing reliable result to the scheduled visit will be used. An assessment will be considered reliable if it is performed without any technical problem and if the result is within the range of plausible values.

Table 10 Visit windows

Study period	Scheduled visit	Visit Window (days)
Pre treatment	Screening	-7 to 1
Treatment Cycle 1	Baseline	1 (prior to first dose)
	Week 2 (Telephone contact)	8 to 22
	Week 4 (Telephone contact)	22 to 36
	Week 6	39 to 47
	Week 12	78 to 92
	Week 16 (Telephone contact)	99 to 127
	Additional visits	Every 42 days (± 7 days)
Treatment Cycles 2, 3, 4	Day 1	Treatment Cycle Day 1
	Week 2 (Telephone contact)	Treatment Cycle Day 8 to 22
	Week 4 (Telephone contact)	Treatment Cycle Day 22 to 36
	Week 6	Treatment Cycle Day 39 to 47
	Week 12	Treatment Cycle Day 78 to 92
	Week 16 (Telephone contact)	Treatment Cycle Day 99 to 127
	Additional visits	Every 42 days (± 7 days)

3.2.15 Rules and Data Formats

Data will be presented using an appropriate number of decimal places (i.e. the number of decimal places used does not imply undue precision). Raw data will be presented to the number of decimal places collected and derived data will be presented to an appropriate number of decimal places. The appropriate number of decimal places will be determined by general practice, mathematical rationale or scientific rationale (e.g. age should be presented in whole numbers).
Descriptive statistics will include n, n missing, and:

- Mean, standard deviation, minimum, median, maximum and 95% CI for means for interval-type variables
- Counts and percents of each category for categorical nominal variables
- Both for categorical ordinal variables.

Mean, median, standard deviation and standard errors of the mean values will be reported to one decimal place greater than the raw/derived data that they summarise. Minimum and maximum values will be reported with the same precision as the raw data. Lower and upper CI values will be presented to one decimal place more than the raw/derived data (i.e. to the same number of decimal places as the mean). Percentages will be reported to one decimal place and 0% will not be presented. Percentages will be calculated using a denominator of all subjects in a specified population. The denominator will be specified in a footnote to the tables for clarification if necessary.

All values below or above a limit of detection (e.g. <0.1 or >100) will be listed as such. These values will not be included in any summary statistics.
All text fields must be left justified and numeric or numeric with some text specification (e.g. not done, unknown, $<4.5, \ldots$) must be decimal justified. Dates will be presented in the format ddMMMyyyy and times in the format hh:mm.

3.2.16 Pooling of Centres

It is not planned to perform a subgroup analysis on individual or groups of centres. In order to assure that the centre effect will be properly estimated in the statistical models, it is necessary to only consider the centres with a sufficient number of recruited subjects. Therefore, it has been decided to apply the following approach:

- the centres having recruited at least six subjects will be taken into account for the estimate of the centre effect.
- the centres having recruited less than six subjects will be pooled with one (or several) centre(s) within the same country (or across countries within the same region) until the number of subjects in the resulting pooled centre(s) is at least equal to six. Then, only the pooled centre(s) will be taken into account for the estimate of the centre effect.
With such an approach, all the centres (original or pooled) considered for the estimate of the centre effect will account for at least six recruited subjects.
The pooling of small centres will be confirmed at the BDRM prior to unblinding.
For the primary efficacy endpoint only, a sensitivity analysis will be conducted in order to investigate homogeneity of treatment response across centres.

3.2.17 Interim Analysis

No interim analysis will be performed.

3.2.18 Role of Data and Safety Monitoring Board

The DSMB will be composed of independent experts including one independent clinician who specialises in treating paediatric spasticity, one independent statistician and one independent pharmacovigilance expert. Data and Safety Monitoring Board meetings will take place as defined in the charter describing the operation of this committee and will depend on recruitment rate of the study. The first data review will take place after five subjects have been on treatment for at least 6 weeks or 4 months after the first subject has been randomised, whichever occurs first. Subsequent meetings will take place at intervals as defined by this committee.
Safety and efficacy data will be provided to the committee for their review. Possible recommendations that the DSMB can make regarding the conduct of the study are described in the charter. This includes recommending that the study is stopped for safety reasons.
The Chair of the DSMB will be responsible for communicating the committee's recommendations to Ipsen.

4 COMPUTER SYSTEMS, SOFTWARE AND VALIDATION OF PROGRAMS

4.1 Hardware

The statistical analysis will be performed under the Microsoft Windows operating system.

4.2 Software

All statistical analyses will be performed using SAS ${ }^{\circledR}$ Software version 9.4 or later (SAS Institute Inc., Cary, NC, USA).

4.3 Validation and QC (Quality Control) Plan

All SAS® programs are checked for logic by the developer and verifier, if applicable. The verification procedures used to ensure SAS ® programs work as intended are described in

All programs for the production of analysis datasets and tables, listings, and figures (TLFs) are double programmed by the verifier. Initial programming results and verification programming results are compared electronically. Tables and listings are double programmed and results of the initial programming and the verification programming are compared electronically. The verification process for figures may follow the double-programming process, or by confirming that data points contained in the plot are consistent against a source table or listing.
SAS ${ }^{(B)}$ CCl "Quality Control of SAS ${ }^{(8)}$ Programming" describes the quality control procedures that must be performed for all SAS^{\circledR} programs and outputs. Quality control is defined here as the operational techniques and activities undertaken to verify that the SAS^{\circledR} programs produce the proper clinical study output by checking for their logic, efficiency and commenting and by inspection of the produced output.
Individual output review is performed on all outputs by the statistical reviewer. It includes checking against mocks and checking for overall consistency and accuracy. In addition a Senior Biostatistical Reviewer performs high level review of the outputs to confirm statistical validity and compliance with the associated analysis plan.
A SAS® Programming and Quality Control Plan is prepared to document the methods of validation.
Copies of the QC documentation produced as confirmation that the validation process has been followed will be provided by CCl and will be retained by the sponsor.

4.4 Restitution of the Programs

All programs (including Macros and analysis datasets) producing the tables, listings and statistical output along with associated logs should be given to the sponsor when the tables, listings, figures and statistical analysis has been finalised.

5 CHANGES FROM PROTOCOL

- 'Treatment Cycle' is used instead of 'Treatment'
- According to the protocol listings will be sorted by treatment group and subject ID. As the treatment group for a subject can change during the course of the study, listings will be presented by subject ID instead.
- MAS responder analyses in injected muscle group (elbow, wrist and finger flexors) has been added to the tertiary efficacy endpoints.
- GAS responder analyses has been added to the tertiary efficacy endpoints
- Time to retreatment. The time from injection to retreatment (in weeks) will be summarized by treatment group and overall in the mITT population for subjects retreated at any time from the Week 16 visit onwards. Subjects who are not retreated are censored at the date of their last recorded visit in the treatment cycle or observational phase. Results from the Kaplan-Meier analysis will be obtained using the SAS® LIFETEST procedure. A summary table will present the results from the Kaplan-Meier analysis and will include the numbers of subjects at risk, censored and with an event (retreated) for each time interval, as well as the Kaplan-Meier estimates, the median time to event, and 95% CI. In addition, the Kaplan-Meier estimated survival functions will be plotted. Summary tables for the number and percentages of subjects retreated at each Treatment Cycle from Week 16 onwards and the time to retratment will also be displayed. An individual data listing will present the actual time to retreatment for each subject.
- The sensitivity analysis on the primary and first secondary endpoint to assess the impact of missing values will be performed on the full population of all randomised subjects instead of the population of all randomised subjects who received at least one injection of study treatment.
- According to the study protocol the theoretical maximum dose for the study limb was 640 U in the $16 \mathrm{U} / \mathrm{kg}$ group, however, due to the reconstitution of Dysport the maximum actual dose is 650 U .

6 REFERENCES

1 ICH Topic E9. Statistical principles for clinical trials (CPMP/ICH/363/96). March 1998
2 Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14
3 Jethwa A, Mink J, Macarthur C, et al. Development of the hypertonia assessment tool (HAT): a discriminative tool for hypertonia in children. Dev Med Chil Neurol 2010;52(5):e83 e87
4 Bohannon R and Smith MB. Interrater reliability of a Modified Ashworth Scale of muscle spasticity. Phys Ther 1987;67(2):206-207
5 Kiresuk TJ and Sherman RE. Goal attainment scaling: A general method for evaluating comprehensive community mental health programmes. Community Mental Health Journal 1968; 4: 443-453
6 Rushton PW and Miller WC. Goal Attainment Scaling in the Rehabilitation of Patients with Lower-Extremity Amputations: A Pilot Study. Arch Phys Med Rehabil Vol 83, June 2002
7 Lowe K, Novak I and Cusick A. Low-dose/high-concentration localized botulinum toxin A improves upper limb movement and function in children with hemiplegic cerebral palsy. Dev Med Child Neurol 2006;48(3):170-175.

8 Fehlings D, Rang M, Glazier J and Steele C. An evaluation of botulinum-A toxin injections to improve upper extremity function in children with hemiplegic cerebral palsy. J Pediatr 2000;137(3):331-337.
9 Krumlinde-Sundholm L, Holmefur M, Kottorp A and Eliasson AC. The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol 2007;49(4):259-264.
10 Holmefur M, Krumlinde-Sundholm L. Proceedings of the $4^{\text {th }}$ International Cerebral Palsy Conference Pisa, Italy, 10-13 October 2012; p 114.
11 Holmefur M, Krumlinde-Sundholm L. Psychometirc properties of a revised version of the Assisting Hand Assessment (Kids-AHA 5.0), Dev Med Child 2015;58(6):618-24.
12 Jackson D, Horn S, Kersten P and Turner-Stokes L. Development of a pictorial scale of pain intensity for patients with communication impairments: initial validation in a general population. Clin Med 2006;6(6):580-585.
13 Hicks CL, von Baeyer CL, Spafford P, et al. The Faces Pain Scale Revised: toward a common metric in pediatric pain measurement. Pain 2001;93(2):173-183.
14 Bieri D, Reeve RA, Champion GD, et al. The Faces Pain Scale for the self-assessment of the severity of pain experienced by children: development, initial validation, and preliminary investigation for ratio scale properties. Pain 1990;41(2):139-150.
15 Varni JW, Seid M and Kurtin PS. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med Care 2001;39(8):800-812.
16 Varni JW, Burwinkle TM, Berrin SJ et al. The PedsQL in pediatric cerebral palsy: reliability, validity, and sensitivity of the Generic Core Scales and Cerebral Palsy Module. Dev Med Child Neurol 2006;48(6):442-449.

7 DATA PRESENTATION

Footnotes will be used to clarify ambiguities (e.g., the denominator used to calculate a percentage). Footnotes will be presented on each page of each table and listing; in case there is a high number of footnotes for a table or listing, footnotes can also be presented separately on the first page. The title of each generated table and listing will appear bookmarked within PDF (one single bookmark per table/listing) to allow document publishing by the Sponsor. Table \& Listings templates are provided in a separate document. The tables and listings will be presented in A4 landscape, in a fixed font (Courier New) with a size as 8 and according to the standard margins defined in 080259-SOP and 36280-FOR.
All tables, in table number order, will be presented in a bookmarked PDF. These should also be presented in a file per section (both formats) depending on the file size (not greater than 100 MB). The same applies to listings.

7.1 Listings Index

The numbering of the listings will be such that they can be easily integrated into the Clinical Study Report following ICH Section 16.2.

The numbering of the tables will be such that they can be easily integrated into the Clinical Study Report following ICH Section 14.

7.4 Statistical Appendix

A Statistical Appendix for inclusion in the study report will be provided. All the methods used in checking the assumptions of the analyses and conclusions should be included and explained. Transformation of the data or other methods used for the statistical analysis other than the ones detailed in the SAP will be described and the change will be justified. All the $\mathrm{SAS®}$ output will be included without reworking the data (raw output).
For the ANCOVA and ANOVA, the output of the MIXED procedure within SAS ${ }^{\circledR}$ will be presented. This will include the overall ANCOVA/ANOVA table, parameter

CONFIDENTIAL

estimates, least square means for the treatment group with 95\% CIs and the associated p-values.This output should contain the study number, the date, the number of pages printed by SAS^{\circledR} and the table number to which it refers. Any other relevant information (e.g. statistical references...) will be added in the Statistical Appendix.

8 APPENDICES

8.1 Vital Signs Normal Ranges

8.1.1 Heart Rate

Table 11 Heart rate normal ranges (bpm)

Age range (years)	Low	Normal	High
$2-<6$	<80	$80-140$	>140
$6-<12$	<60	$60-120$	>120
≥ 12	<50	$50-100$	>100

8.1.2 Blood Pressure

Table 12 Blood pressure normal ranges

Age (years)	Systolic blood pressure		Diastolic blood pressure			
	Low	Normal	High	Low	Normal	High
$2-3$	<80	$80-120$	>120	<35	$35-70$	>70
$4-6$	<80	$80-120$	>120	<45	$45-80$	>80
$7-10$	<85	$85-120$	>120	<50	$50-80$	>80
$11-12$	<90	$90-130$	>130	<55	$55-85$	>85
≥ 13	<90	$90-140$	>140	<60	$60-90$	>90

8.2 Body Mass Index Normal Ranges

Table 13 BMI categories

Weight Status Category	Percentile Range
Underweight	Less than the 5th percentile
Healthy weight/ Overweight	5th percentile to less than the 95th percentile
Obese	Equal to or greater than the 95th percentile

SAP Final Version 2.0: 19 Oct 2018
SAP Final Version 2.0: 19 Oct 2018

	Boys			Girls		
Age (months)	Underweight: BMI <	Healthy weight/ Overweight: BMI [; [Obese : BMI >=	Underweight: BMI <	Healthy weight/ Overweight: BMI [; [Obese : BMI >=
53.5	13.94003	13.94003; 17.82544	17.82544	13.62231	13.62231; 18.07486	18.07486
54.5	13.92353	13.92353; 17.83295	17.83295	13.6058	13.6058; 18.09289	18.09289
55.5	13.90771	13.90771; 17.84349	17.84349	13.58997	13.58997; 18.1137	18.1137
56.5	13.89257	13.89257; 17.85699	17.85699	13.5748	13.5748; 18.13722	18.13722
57.5	13.87809	13.87809; 17.87335	17.87335	13.56031	13.56031; 18.16341	18.16341
58.5	13.86426	13.86426; 17.89252	17.89252	13.54649	13.54649; 18.19221	18.19221
59.5	13.85108	13.85108; 17.9144	17.9144	13.53336	13.53336; 18.22355	18.22355
60.5	13.83855	13.83855; 17.93893	17.93893	13.52091	13.52091; 18.25738	18.25738
61.5	13.82665	13.82665; 17.96602	17.96602	13.50915	13.50915; 18.29365	18.29365
62.5	13.81537	13.81537; 17.99562	17.99562	13.49808	13.49808; 18.3323	18.3323
63.5	13.80472	13.80472; 18.02764	18.02764	13.4877	13.4877; 18.37327	18.37327
64.5	13.79469	13.79469; 18.06201	18.06201	13.47802	13.47802; 18.41651	18.41651
65.5	13.78527	13.78527 ; 18.09868	18.09868	13.46903	$13.46903 ; 18.46197$	18.46197
66.5	13.77646	13.77646; 18.13758	18.13758	13.46075	$13.46075 ; 18.50959$	18.50959
67.5	13.76825	13.76825; 18.17863	18.17863	13.45317	13.45317; 18.55932	18.55932
68.5	13.76065	13.76065; 18.22179	18.22179	13.4463	13.4463; 18.61111	18.61111
69.5	13.75364	13.75364; 18.26698	18.26698	13.44013	13.44013; 18.6649	18.6649
70.5	13.74724	13.74724; 18.31416	18.31416	13.43467	13.43467 ; 18.72064	18.72064
71.5	13.74144	13.74144; 18.36325	18.36325	13.42991	13.42991; 18.77829	18.77829
72.5	13.73624	13.73624; 18.41421	18.41421	13.42587	$13.42587 ; 18.83778$	18.83778
73.5	13.73164	13.73164; 18.46699	18.46699	13.42254	13.42254; 18.89907	18.89907
74.5	13.72764	13.72764; 18.52152	18.52152	13.41992	$13.41992 ; 18.96211$	18.96211
75.5	13.72424	13.72424; 18.57775	18.57775	13.41801	$13.41801 ; 19.02685$	19.02685
76.5	13.72145	13.72145; 18.63564	18.63564	13.41681	$13.41681 ; 19.09324$	19.09324
77.5	13.71927	13.71927; 18.69513	18.69513	13.41632	$13.41632 ; 19.16123$	19.16123
78.5	13.71769	13.71769; 18.75617	18.75617	13.41654	$13.41654 ; 19.23077$	19.23077
79.5	13.71672	13.71672; 18.81872	18.81872	13.41748	$13.41748 ; 19.30182$	19.30182
80.5	13.71637	13.71637; 18.88272	18.88272	13.41912	13.41912; 19.37432	19.37432
81.5	13.71663	13.71663; 18.94814	18.94814	13.42147	13.42147 ; 19.44822	19.44822
82.5	13.71751	$13.71751 ; 19.01491$	19.01491	13.42453	$13.42453 ; 19.52349$	19.52349

SAP Final Version 2.0: 19 Oct 2018

	Boys			Girls		
Age (months)	Underweight: BMI <	Healthy weight/ Overweight: BMI [; [Obese : BMI >=	Underweight: BMI <	Healthy weight/ Overweight: BMI [; [Obese : BMI >=
83.5	13.71901	13.71901; 19.083	19.083	13.42829	13.42829; 19.60008	19.60008
84.5	13.72113	13.72113; 19.15236	19.15236	13.43276	13.43276; 19.67794	19.67794
85.5	13.72387	13.72387 ; 19.22295	19.22295	13.43793	$13.43793 ; 19.75702$	19.75702
86.5	13.72724	13.72724; 19.29471	19.29471	13.4438	13.4438; 19.83728	19.83728
87.5	13.73124	13.73124; 19.36761	19.36761	13.45037	$13.45037 ; 19.91867$	19.91867
88.5	13.73587	13.73587; 19.44161	19.44161	13.45764	$13.45764 ; 20.00116$	20.00116
89.5	13.74113	13.74113; 19.51666	19.51666	13.4656	13.4656;20.08469	20.08469
90.5	13.74702	$13.74702 ; 19.59272$	19.59272	13.47425	$13.47425 ; 20.16923$	20.16923
91.5	13.75355	13.75355; 19.66974	19.66974	13.48359	13.48359; 20.25473	20.25473
92.5	13.76071	$13.76071 ; 19.74769$	19.74769	13.49362	13.49362; 20.34116	20.34116
93.5	13.76852	13.76852; 19.82652	19.82652	13.50432	13.50432; 20.42846	20.42846
94.5	13.77695	13.77695; 19.9062	19.9062	13.51571	13.51571; 20.51661	20.51661
95.5	13.78603	$13.78603 ; 19.98668$	19.98668	13.52777	13.52777 ; 20.60555	20.60555
96.5	13.79575	13.79575; 20.06793	20.06793	13.5405	13.5405;20.69525	20.69525
97.5	13.8061	13.8061; 20.1499	20.1499	13.5539	13.5539; 20.78568	20.78568
98.5	13.8171	13.8171; 20.23256	20.23256	13.56797	$13.56797 ; 20.87678$	20.87678
99.5	13.82873	13.82873; 20.31587	20.31587	13.58269	13.58269; 20.96853	20.96853
100.5	13.84101	13.84101; 20.39979	20.39979	13.59807	$13.59807 ; 21.06089$	21.06089
101.5	13.85392	13.85392; 20.48429	20.48429	13.6141	13.6141;21.15381	21.15381
102.5	13.86747	13.86747 ; 20.56933	20.56933	13.63077	13.63077 ; 21.24727	21.24727
103.5	13.88166	13.88166; 20.65487	20.65487	13.64809	13.64809; 21.34123	21.34123
104.5	13.89648	13.89648; 20.74089	20.74089	13.66605	13.66605; 21.43565	21.43565
105.5	13.91194	$13.91194 ; 20.82733$	20.82733	13.68463	$13.68463 ; 21.53049$	21.53049
106.5	13.92804	$13.92804 ; 20.91417$	20.91417	13.70384	13.70384; 21.62573	21.62573
107.5	13.94476	13.94476; 21.00138	21.00138	13.72368	13.72368; 21.72133	21.72133
108.5	13.96212	13.96212; 21.08893	21.08893	13.74413	$13.74413 ; 21.81725$	21.81725
109.5	13.9801	13.9801; 21.17677	21.17677	13.76519	13.76519; 21.91347	21.91347
110.5	13.99871	13.99871; 21.26488	21.26488	13.78685	$13.78685 ; 22.00996$	22.00996
111.5	14.01795	14.01795; 21.35323	21.35323	13.80911	$13.80911 ; 22.10667$	22.10667
112.5	14.0378	14.0378; 21.44178	21.44178	13.83197	$13.83197 ; 22.20358$	22.20358

SAP Final Version 2.0: 19 Oct 2018
SAP Final Version 2.0: 19 Oct 2018

	Boys			Girls		
Age (months)	Underweight: $\mathbf{B M I}<$	Healthy weight/ Overweight: BMI [; [Obese : BMI >=	Underweight: BMI <	Healthy weight/ Overweight: BMI [; [Obese : BMI >=
143.5	14.94002	14.94002; 24.1475	24.1475	14.79484	14.79484; 25.16522	25.16522
144.5	14.97745	14.97745; 24.22985	24.22985	14.83262	14.83262; 25.25564	25.25564
145.5	15.01532	15.01532; 24.31172	24.31172	14.87073	14.87073; 25.34557	25.34557
146.5	15.05363	15.05363; 24.3931	24.3931	14.90914	14.90914; 25.43498	25.43498
147.5	15.09238	15.09238; 24.47397	24.47397	14.94784	14.94784; 25.52387	25.52387
148.5	15.13155	15.13155; 24.55434	24.55434	14.98682	14.98682; 25.61223	25.61223
149.5	15.17113	15.17113; 24.6342	24.6342	15.02607	15.02607; 25.70005	25.70005
150.5	15.21113	15.21113; 24.71352	24.71352	15.06559	15.06559; 25.78731	25.78731
151.5	15.25152	15.25152; 24.79232	24.79232	15.10535	15.10535; 25.87401	25.87401
152.5	15.2923	15.2923; 24.87058	24.87058	15.14535	15.14535; 25.96013	25.96013
153.5	15.33347	15.33347; 24.94829	24.94829	15.18558	15.18558; 26.04568	26.04568
154.5	15.37501	15.37501; 25.02545	25.02545	15.22602	15.22602; 26.13065	26.13065
155.5	15.41692	15.41692; 25.10206	25.10206	15.26666	15.26666; 26.21502	26.21502
156.5	15.45918	15.45918; 25.17811	25.17811	15.30749	15.30749; 26.2988	26.2988
157.5	15.50179	15.50179; 25.2536	25.2536	15.34849	15.34849; 26.38197	26.38197
158.5	15.54474	15.54474; 25.32853	25.32853	15.38966	15.38966; 26.46453	26.46453
159.5	15.58801	15.58801; 25.40289	25.40289	15.43098	15.43098; 26.54648	26.54648
160.5	15.63161	15.63161; 25.47668	25.47668	15.47244	15.47244; 26.62782	26.62782
161.5	15.67551	15.67551; 25.5499	25.5499	15.51403	15.51403; 26.70853	26.70853
162.5	15.71971	15.71971; 25.62256	25.62256	15.55572	15.55572; 26.78862	26.78862
163.5	15.7642	15.7642; 25.69464	25.69464	15.59752	15.59752; 26.86808	26.86808
164.5	15.80897	15.80897; 25.76616	25.76616	15.63941	15.63941; 26.94692	26.94692
165.5	15.85401	15.85401; 25.83712	25.83712	15.68136	15.68136; 27.02513	27.02513
166.5	15.89931	15.89931; 25.90751	25.90751	15.72338	15.72338; 27.1027	27.1027
167.5	15.94486	15.94486; 25.97734	25.97734	15.76544	15.76544; 27.17965	27.17965
168.5	15.99065	15.99065; 26.04662	26.04662	15.80753	15.80753; 27.25597	27.25597
169.5	16.03667	16.03667; 26.11535	26.11535	15.84964	15.84964; 27.33167	27.33167
170.5	16.0829	16.0829; 26.18353	26.18353	15.89175	15.89175; 27.40673	27.40673
171.5	16.12934	16.12934; 26.25117	26.25117	15.93385	15.93385; 27.48118	27.48118
172.5	16.17598	16.17598; 26.31828	26.31828	15.97592	15.97592; 27.555	27.555

SAP Final Version 2.0: 19 Oct 2018
SAP Final Version 2.0: 19 Oct 2018
IPSEN GROUP
SAP Final Version 2.0: 19 Oct 2018

8.3

8.4 Adverse Events of Special Interest - Remote Spread of Effects

The following list of MedDRA PT names and codes (version 20.0) has been defined to identify any events which may possibly represent a remote spread of effect:

PT Name	PT Code
Accommodation disorder	10000389
Areflexia	10003084
Aspiration	10003504
Botulism	10006041
Bradycardia	10006093
Bulbar palsy	10006542
Constipation	10010774
Cranial nerve palsies multiple	10011314

CONFIDENTIAL

SAP Final Version 2.0: 19 Oct 2018

Cranial nerve paralysis	10061908
Diaphragmatic paralysis	10012725
Diplopia	10013036
Dry mouth	10013781
Dysarthria	10013887
Dysphagia	10013950
Dysphonia	10013952
Dyspnoea	10013968
Extraocular muscle paresis	10015829
Eyelid function disorder	10061145
Eyelid ptosis	10015995
VIIth nerve paralysis (Low Level Term (LLT))	10050040
Facial paresis	10051267
Hemiparesis	10019465
Hypoglossal nerve paresis	10067129
Hyporeflexia	10021089
Hypotonia	10021118
IIIrd nerve paresis	10054202
Ileus paralytic	10021333
IVth nerve paresis	10054201
Monoparesis	10027925
Muscular weakness	10028372
Paralysis	10033799
Paralysis flaccid (LLT)	10033809
Paraparesis	10033885
Paresis	10033985
Paresis cranial nerve	10061911
Pelvic floor muscle weakness	10064026
Peripheral nerve palsy	10058530
Peripheral paralysis	10054808
Pneumonia aspiration	10035669
Pupillary reflex impaired	10037532
Quadriparesis	10049680
Respiratory arrest	10038669
Respiratory depression	10038678
Respiratory failure	10038695
Speech disorder	10041466
Trigeminal nerve paresis	10068008
Urinary retention	10046555
Vision blurred	10047513
Vocal cord paralysis	10047674
Vocal cord paresis	10049234
Neuromuscular toxicity	10062284
Paralysis recurrent laryngeal nerve	10033830
Respiratory distress	10038687
Respiratory paralysis	10038708

8.5 Study Limb Dose in Units

According to body weight and randomised or planned Dysport Dose in U/kg subjects will receive the following Dysport Dose in Units in the study limb (specified in Instuction Leaflet Dysport ${ }^{\circledR}$, version 7.0 01 March 2017):

Dysport Dose $2 \mathrm{U} / \mathrm{kg}$	
Patient Weight (kg)	Dysport Dose in Units
10	20
11	20
12	20
13	30
14	30
15	30
16	30
17	30
18	40
19	40
20	40
21	40
22	40
23	50
24	50
25	50
26	50
27	50
28	60
29	60
30	60
31	60
32	60
33	70
34	70
35	70
36	70
37	70
38	80
39	80
40	80

Dysport Dose 4 U/kg

Patient Weight (kg)	Dysport Dose in Units
10	40
11	40
12	50
13	50
14	60
15	60
16	60
17	70
18	70
19	80
20	80
21	80

CONFIDENTIAL

SAP Final Version 2.0: 19 Oct 2018
107/108

22	90
23	90
24	100
25	100
26	100
27	110
28	110
29	120
30	120
31	120
32	130
33	130
34	140
35	140
36	140
37	150
38	150
39	160
40	160

Dysport Dose 8 U/kg	
Patient Weight (kg)	Dysport Dose in Units
10	80
11	90
12	100
13	100
14	110
15	120
16	130
17	140
18	140
19	150
20	160
21	170
22	180
23	180
24	190
25	200
26	210
27	220
28	220
29	230
30	240
31	250
32	260
33	260
34	270
35	280
36	290
37	300
38	300
39	310
40	320

CONFIDENTIAL

Dysport Dose 16 U/kg	
Patient Weight (kg)	Dysport Dose in Units
10	160
11	180
12	190
13	210
14	220
15	240
16	260
17	270
18	290
19	300
20	320
21	325
22	350
23	375
24	375
25	400
26	425
27	425
28	450
29	475
30	475
31	500
32	500
33	525
34	550
35	550
36	575
37	600
38	600
39	625
40	650

[^0]: PROTOCOL TITLE: A PHASE III, MULTICENTRE, DOUBLE BLIND, PROSPECTIVE, RANDOMISED, CONTROLLED, MULTIPLE TREATMENT STUDY ASSESSING EFFICACY AND SAFETY OF DYSPORT USED IN THE TREATMENT OF UPPER LIMB SPASTICITY IN CHILDREN

