Casting without Reduction versus Closed Reduction with or without Fixation in the Treatment
 of Distal Radius Fractures in Children: A Study Protocol for a Randomized Non-Inferiority Trial
 3

4 Background

5

Fractures are prevalent in the pediatric population. It is estimated that one in three children will
sustain at least one fracture before adulthood, of which distal metaphyseal radius fractures are
the most frequent[1, 2]. Current treatments include *in situ* cast immobilization, or reduction
with or without fixation with K-wires, decided upon angulation and displacement. Traditionally,
specific deformity limits are tolerated, given the child's age and gender, however, these limits
lack supportive evidence. Further, treatment agreement, even between experienced pediatric
orthopedic surgeons, is minimal[3].

13

Distal radius fractures have a remarkable remodeling potential. The remodeling rate is higher 14 15 when the angulation is more severe, and it progressively decreases as the alignment 16 approaches to normal[4]. Observational designs have shown that fractures up to 29 degrees of 17 angulation and 19 mm of shortening immobilized in situ regain complete alignment about a 18 year after injury[5]. Even shorter times to proper alignment are reported in younger children[5]. 19 Additionally, Crawford et al. describe a series of children treated with cast immobilization 20 without restoring the length of the radius, achieving neutral ulnar variance at follow-up[6]. 21 Furthermore, when alignment is lost, typical radius morphology is present within three years

22	even when the fracture is immobilized without any attempt to regain alignment[7]. Hence,
23	casting without reduction is considered a suitable treatment.
24	
25	Some specialized centers reserve distal radius corrective osteotomy solely for fracture
26	malunion in children approaching the end of growth or with associated physeal arrest. It is also
27	the treatment of choice for children with congenital dysplastic conditions of the bone[8].
28	
29	Functional evaluation
30	
31	Upper extremity functionality refers to reaching, grasping, and manipulating objects with the
32	intention to perform daily life activities[9]. Most of the instruments that assess upper extremity
33	functionality in the pediatric population are specific to patients with longitudinal deficiencies,
34	amputations, or neurodevelopmental disorders. Specific instruments for adults have also been
35	published, however, several items refer to tasks that a 5-year-old child might not be able to
36	properly execute.
37	
38	The physical functioning domain of the PROMIS scales is available for assessing functionality of
39	children without disabilities since 2011[10]. It is a precise and easy-to-administer outcome
40	measurement instrument in children with orthopedic conditions. Children aged 8 years
41	onwards are able to, effortlessly, answer the questionnaire by themselves. A parent-proxy
42	version is available for younger children. The upper extremity functionality is a subdomain of

43	the physical functioning domain. It comprises 29 Liker-type questions with five categories that
44	enquire about the difficulty of carrying out activities during the past week.
45	
46	The trial's primary goal is to establish whether upper extremity's functionality of children who
47	sustained a distal metaphyseal fracture of the radius and were treated with in situ cast
48	immobilization, is not worse than the functionality of children treated with closed reduction
49	and cast immobilization, with or without fixation, measured at 6 months with the PROMIS
50	scale. Secondarily, range of motion (ROM), alignment, complications and further treatments
51	will also be compared. Results may contribute to not only strengthening the evidence of secure
52	shortening and angulation boundaries, aiding the clinician with evidence-based decision, but
53	risks and costs may also be questioned, when encountering these kinds of fractures.
54	
55	Methods
56	
57	Study design and procedures
58	
59	This is a randomized non-inferiority trial that will take place at Instituto Roosevelt in Bogota-
60	Colombia, a single institution that focuses on providing treatment for children with orthopedic
61	and neuromuscular conditions. Two accepted treatments for metaphyseal distal radius
62	fractures will be compared: cast immobilization without reduction as the experimental
63	intervention, and closed reduction and immobilization with or without percutaneous fixation as
64	the control intervention. Acutely, conventional oral analgesics will be routinely provided,

65	afterwards, the principal researcher will invite children and parents to enter into the trial upon
66	confirming admission criteria. Informed consent, along with informed assent, will be signed.
67	
68	Inclusion criteria
69	
70	Children between 5 to 10 years of age with a proven acute (i.e., within 14 days after injury)
71	metaphyseal fracture of the distal radius (23-M 2-3 or 23r-M 2-3 according to the AO pediatric
72	classification) will be regarded as eligible for the trial. Fracture shortening and angulation must
73	range from 0 to 10 mm and 10 to 20 degrees in the oblique plane, respectively.
74	
75	Exclusion criteria
76	
77	 Polytrauma (Injury Severity Score ≥ 16)
78	A concomitant fracture in the same limb
79	Pathologic/open fracture
80	Neuromuscular/metabolic bone diseases
81	Concomitant neurologic/vascular lesions
82	Longitudinal limb deficiency
83	Previous infection/fracture in the fractured radius
84	
85	Randomization
86	

87	Randomization will be performed centrally by the Instituto Roosevelt Medical Research
88	Department. Therefore, allocation will be concealed to the orthopedic surgeons. The Big Stick
89	Design (BSD) with a maximum tolerated imbalance of 2 will be the methodology for
90	randomization. The BSD has a very low probability of correctly guessing the allocation of the
91	next child compared to other designs[11]. The R and RStudio statistical software, specifically the
92	randomizeR package version 4.1, will be used[12].
93	
94	Interventions
95	
96	Patients will be allocated in a 1:1 ratio to either the experimental or control group. In the
97	former, fractures will be immobilized without reduction. In the latter, fractures will be reduced
98	and immobilized. Provided instability, K-wires will be used. Instability is considered when, after
99	reduction, alignment is lost: a new displacement or angulation larger than 50% and 10 degrees,
100	respectively. General anesthesia will be mandatory exclusively for the control group. Discharge
101	within two hours is the standard practice for both procedures. Plain radiographs will be
102	obtained immediately after the intervention, at two weeks, three-, and nine-months during
103	follow-up. Casts and K-wires will be removed at 6 weeks.
104	
105	Endpoints and follow up
106	
107	Children will be evaluated at about two and six weeks, three, six, and nine months after

108 randomization. The primary endpoint is the upper extremity function assessed with the

109	PROMIS Pediatric Physical Function v2.0 at six months. Parents will serve as proxies of children
110	<8 years with the proper format of the scale. From 8 years of age onwards, children will
111	personally answer the questionnaire.
112	
113	The secondary outcomes are the ROM, ulnar variance, and fracture alignment in the sagittal
114	and coronal planes. Plain radiographs of the wrist at two weeks, three and nine months and a
115	standard goniometer will be used. Additionally, general anesthesia-related adverse effects,
116	pressure ulcers according to the National Pressure Ulcer Advisory Panel, the number of days of
117	required oral analgesics and Dahl classification of pin tract infections will also be registered[13].
118	Further treatments such as radius osteotomy due to deformity, pseudoarthrosis cure, and
119	remanipulation will also be recorded. Figure 1 depicts the flow of the study.
120	
121	Power analysis and sample calculation
122	
123	In a personal communication, Dr. Calfee provided PROMIS range scores (36 to 39), variability
124	(SD=10) and the minimally clinical important difference (MCID; 3 to 5) in children who have
125	sustained an upper extremity fracture[14]. Therefore, assuming a non-inferiority threshold of 5,
126	the trial requires a sample of 126 children (63 per group) to demonstrate no meaningful
127	difference in the primary outcome (one-tailed α =0.05, β =0.2). The sample will be inflated to
128	152 (20%) due to the anticipation of loss to follow-up.
129	

130 Data management

131

Participant's information will be recorded in the REDCap software. Registries will be passwordprotected with access granted just to the principal researcher and the study conductor. Data
will be kept at the Instituto Roosevelt Medical Research Department. After completing the
study, data will be preserved for two years, then all non-anonymized documents will be
discarded.

137

138 Statistical analysis

139

140 Customary descriptive statistics will be used whether the variables are continuous or categorical. The intention-to-treat principle will be followed in this trial. Authors of the scale in 141 142 the Northwestern University will standardize PROMIS scores once data gathering is completed, 143 afterwards, the primary outcome will be evaluated with a t-test. The non-inferiority threshold 144 will be compared to the lower bound of the 95% confidence interval of the mean difference. 145 Secondary outcomes measured with continuous variables (i.e., ROM, ulnar variance, fracture 146 alignment and number of days with oral analgesia) will be compared with the t-test or Mann-147 Whitney's U conforming to the distribution of the variables. Categorical outcomes will be 148 compared with the Fisher's exact test (i.e., anesthesia-related adverse effects, pressure ulcers, 149 pin tract infections, radius osteotomies, pseudoarthrosis, and remanipulations). Early 150 termination of the trial is unlikely; therefore, interim analyses are not considered: given the 151 proposed design, neither superiority nor futility of the experimental treatment is expected. 152

153 Schedule

154

155 Recruitment commenced in June 2021. The principal researcher personally interviews parents 156 and children and the trial's general characteristics are completely explained. Benefits, such as a 157 close follow-up (e.g., radiographs, pain, functionality) are also explained. Authors expect an 158 average of ten patients monthly, therefore, recruitment and analysis should be complete by 159 June 2023. 160 0? 161 Declarations 162 163 Both, Instituto Roosevelt and Pontificia Universidad Javeriana Ethics Committees, evaluated 164 and accepted trial's protocol, research manual, consent and assent forms, and information 165 brochures (approval No. 2021012101-002 and FM-CIE-0416-21, respectively). The datasets used 166 and/or analyzed during the current trial will be available from the corresponding author upon reasonable request. Authors declare no competing interests. No funding to declare. 167 168 Acknowledgments: None. Authors' contributions: MGR: conception and design, data 169 acquisition, analysis and interpretation, drafting of the manuscript and approval of the final 170 version. CMP: critically revised the manuscript, drafting of the manuscript and approval of the 171 final version 172 173 Discussion

This is the protocol of the first randomized trial that intends to compare functional outcomes of
non-reduced versus reduced distal radius fractures in children. To authors knowledge, medical
literature lacks experimental designs that take into account shortening and angulation in this
age group.

179

The principal strength of this trial is the objective evaluation of functional outcomes with a scale constructed with modern measurement theory which is appropriate for the pediatric population, including previously healthy children who sustained a fracture of the wrist. In addition to functional recovery, anatomical parameters, as well as complications due to treatment will also be recorded.

185

The limitations of this trial are the lack of blindness for obvious reasons, and generalizability.
Children will be recruited and treated in a specialized center. In most of authors' country
institutions that deal with fractures in children a pediatric orthopedic surgeon is not available.
The allocation will be open-labeled for patients, parents, and medical staff, this scenario may
affect participants' feelings of well-being. However, results analyses will be blinded.

192 References

193

194 1. Christoffersen T, Ahmed LA, Winther A, Nilsen OA, Furberg AS, Grimnes G, et al. Fracture

195 incidence rates in Norwegian children, The Tromsø Study, Fit Futures. Arch Osteoporos.

196 2016;11. doi:10.1007/s11657-016-0294-z.

197 2. Joeris A, Lutz N, Blumenthal A, Slongo T, Audigé L. The AO Pediatric Comprehensive

198 Classification of Long Bone Fractures (PCCF): Part I: Location and morphology of 2,292 upper

extremity fractures in children and adolescents. Acta Orthop. 2017;88:123–8.

200 3. Dua K, Stein MK, O'Hara NN, Brighton BK, Hennrikus WL, Herman MJ, et al. Variation Among

201 Pediatric Orthopaedic Surgeons When Diagnosing and Treating Pediatric and Adolescent Distal

202 Radius Fractures. J Pediatr Orthop. 2019;39:306–13.

203 4. Friberg KSI. Remodelling after distal forearm fractures in children: I. The effect of residual

angulation on the spatial orientation of the epiphyseal plates. Acta Orthop. 1979;50:537–46.

205 5. Do TT, Strub WM, Foad SL, Mehlman CT, Crawford AH. Reduction versus remodeling in

206 pediatric distal forearm fractures: a preliminary cost analysis. J Pediatr Orthop B. 2003;12:109–

207 10915.

208 6. Crawford SN, Lee LSK, Izuka BH. Closed treatment of overriding distal radial fractures without

reduction in children. J Bone Jt Surg - Ser A. 2012;94:246–52.

210 7. Roth KC, Denk K, Colaris JW, Jaarsma RL. Think twice before re-manipulating distal

211 metaphyseal forearm fractures in children. Arch Orthop Trauma Surg. 2014;:1699–707.

8. Mader K, Gausepohl T, Pennig D. Shortening and deformity of radius and ulna in children:

213 Correction of axis and length by callus distraction. J Pediatr Orthop Part B. 2003;12:183–91.

214 9. Wallen M, Stewart K. Grading and Quantification of Upper Extremity Function in Children

with Spasticity. Semin Plast Surg. 2016;30:5–13.

216 10. DeWitt E, Stucky B, Thissen D, Irwin DE, Langer M, Varni JW. Construction of the Eight Item

217 PROMIS Pediatric Physical Function Scales: Built Using Item Response Theory. J Clin Epidemiol.

218 2011;64:794–804.

219 11. Zhao W,	Weng Y, Wu Q,	Palesch Y.	Quantitative com	iparison of ra	andomization (designs in
-----------------	---------------	------------	------------------	----------------	----------------	------------

sequential clinical trials based on treatment balance and allocation randomness. Pharm Stat.

221 2012;11:39–48. doi:10.1002/pst.493.

- 12. Team RC, Computing RF for S. R: A language and environment for statistical computing.
- 223 2021. https://www.r-project.org/.
- 13. Edsberg L, Black J, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised National
- 225 Pressure Ulcer Advisory Panel Pressure Injury Staging System Revised Pressure Injury Staging
- 226 System. 2016;43 December:585–97.
- 14. Gerull WD, Okoroafor UC, Guattery J, Goldfarb CA, Wall LB, Calfee RP. Performance of
- 228 Pediatric PROMIS CATs in Children With Upper Extremity Fractures. Hand. 2020;15:194–200.