Use of a Low Profile Titanium Mesh in Orbital Reconstruction

This study has been completed.
Sponsor:
Collaborator:
International Bone Research Association
Information provided by:
University Hospital Inselspital, Berne
ClinicalTrials.gov Identifier:
NCT01432964
First received: September 12, 2011
Last updated: NA
Last verified: September 2011
History: No changes posted

September 12, 2011
September 12, 2011
December 2008
Not Provided
Radiological Volume analysis of bony orbits (difference in cm3) [ Time Frame: postoperative, within 12 weeks after operation ] [ Designated as safety issue: No ]
Same as current
No Changes Posted
  • Eye motility (in mm) [ Time Frame: at 12 weeks after the operation ] [ Designated as safety issue: No ]
  • En/Exophthalmos (Hertel Test) (in mm) [ Time Frame: at 12 weeks after the operation ] [ Designated as safety issue: No ]
  • Diplopia (in %) [ Time Frame: at 12 weeks after the operation ] [ Designated as safety issue: No ]
Same as current
Not Provided
Not Provided
 
Use of a Low Profile Titanium Mesh in Orbital Reconstruction
Low Profile Titanium Mesh in the Use of Orbital Reconstruction

In craniofacial trauma, the involvement of orbital structures is noted in up to 40% of cases (Ellis 1985). Post-traumatic orbital deformities caused by incorrect reconstruction of orbital dimensions are severe complications causing enophthalmos, diplopia and visual acuity disturbance. To prevent such complications, immediate repair of orbital injuries with the restoration of normal anatomy is indicated in orbital floor fractures. With the help of biodegradable implants small and medium-sized defects are easily managed (Büchel 2005, Lieger 2010). In extensive fractures however, only calvarian bone and titanium mesh considered to provide a sufficient support of the orbital content.

Calvarial bone can be difficult to mould and to adapt to the form and size of the orbital lesion. In addition, donor site morbidity cannot be disregarded. Orbital reconstruction mesh on the other hand is always available and easier to apply. There are however important requirements for these meshes, such as biocompatibility, excellent stability, optimal adaptability and patient comfort. Recently, the company Medartis developed a titanium mesh featuring a low profile. In order to regain normal function, normal anatomy has to be re-established. It therefore seemed reasonable to assess an implant, which would facilitate orbital reconstruction without disturbing normal anatomy by its size, profile height or properties.

The purpose of this study was to assess the use and accuracy of the low profile titanium mesh for primary internal orbital reconstruction.

Background

Extensive bone loss after orbital trauma requires reconstruction to preserve ocular function and aesthetics. The optimal material for orbital reconstruction remains controversial. Today a multitude of both autogenous and alloplastic materials have been used for orbital reconstruction, including methylmethacrylate, Teflon, silicone, Supramid, Marlex, Silastic, gelatin film, bioactive glas, bone and cartilage (Haug 1999). The use of alloplastic materials has been tempered by complications such as infection, displacement and extrusion, fistula and cyst formation. During the past two decades, autogenous bone grafts have become increasingly popular for orbital reconstruction. Unfortunately, problems with bone grafts can occur and include unpredictable rates of bone resorption and the risk of subsequent dystopia or delayed enophthalmos, donor site complication, time consumption with harvesting and variable graft thickness and irregularities along with difficulty in graft contouring (Park 2001). These problems have revived interest in alloplastic alternatives, particularly in titanium and its alloys (Park 2001). Titanium shows a low infection rate, related in part to its excellent biocompatibility, which manifests as osseointegration. This circumstance is thought to lessen the rate of infection.

During the past decade, different studies have examined a titanium meshes for orbital repair. Plates used in these studies demonstrate a minimum profile height of 0.25mm.

Objective

Assess the use and accuracy of the low profile titanium mesh for primary internal orbital reconstruction

Methods

Clinical assessment prior to operation by a maxillofacial surgeon with regards to bone and soft tissue lesions as well as concomitant injuries. An ophthalmologist then assessed eye lesions and quantified eye mobility (in mm), bulb positioning (Hertel's exophthalmometry, in mm) as well as the field of binocular vision (Goldmann perimetry, in % of the total).

Preoperative 1mm CT-scans were obtained to analyse size and location of the defect as well as extend of muscle entrapment. The fractures were classified according to the scores introduced by Jaquiery(Jaquiery 2007).

Follow up by at 2, 6 and 12 weeks after the operation (assessments see above), including postoperative CT-scan within 12 weeks. Volume analysis of CT comparing the two orbits (OsiriX Medical Image Software (Version 3.7.1, www.osirix-viewer.com).

Observational
Observational Model: Cohort
Time Perspective: Prospective
Not Provided
Not Provided
Non-Probability Sample

Patient with facial fractures, treated at the Department of Oral and Maxillofacial Surgery, University Hospital Bern, Bern, Switzerland.

Orbital Fractures
Procedure: Orbital revision surgery
Surgical revisions were performed under general anaesthesia. The orbital floor was routinely exposed via a transconjunctival incision. In patients with involvement of the medial wall, a combined transconjunctival-transcaruncular approach was used. Herniated or incarcerated tissue was then complete repositioned. Stable borders around the bony defect in the orbital floor were exposed. The aluminium template was pre-bend and controlled in situ. Type and size of mesh were chosen and adjustments performed, as needed. Following the bending of the titanium mesh according to the template, it was inserted and fixed with 1.5mm screws. Alternatively the mesh could be preformed, using a sterilized skull model to shape and contour it to a normal orbit. Finally the eye bulb mobility was controlled using fine forceps (forced duction test) and the wound closed (Vicryl 5/0 rapid; optional).
1
Adult patients (>18 years) presenting a unilateral orbital blow-out or blow-in fracture of ≥ 2.0cm2, causing an actual or expected functional or aesthetical deficit.
Intervention: Procedure: Orbital revision surgery

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Completed
27
October 2010
Not Provided

Inclusion Criteria:

  • adult patients (>18 years)
  • presenting a unilateral orbital blow-out or blow-in fracture of ≥ 2.0cm2, causing an actual or expected functional or aesthetical deficit
  • has to be operated within two weeks of trauma

Exclusion Criteria

  • individuals who did not have any vision on the affected side
  • individuals, who, according to ophthalmologists, should not have a surgical treatment
  • patients who were unable to adequately understand written or oral information in German or French
Both
18 Years and older
No
Contact information is only displayed when the study is recruiting subjects
Switzerland
 
NCT01432964
011/09, 0709-0050
No
Principal Investigator Olivier Lieger, Department of Oral and Maxillofacial Surgery, University Hospital Bern, Switzerland
University Hospital Inselspital, Berne
International Bone Research Association
Principal Investigator: Olivier Lieger, MD, DMD Department of Oral and Maxillofacial Surgery, University Hospital Bern, Switzerland
Study Director: Tateyuki Iizuka, MD, DDS, PhD Department of Oral and Maxillofacial Surgery, University Hospital Bern, Switzerland
University Hospital Inselspital, Berne
September 2011

ICMJE     Data element required by the International Committee of Medical Journal Editors and the World Health Organization ICTRP