Computerized Glucose Control in Critically Ill Patients (CGAO-REA)

This study has been completed.
Sponsor:
Collaborators:
Société Française d'Anesthésie et de Réanimation
Baxter Healthcare Corporation
Information provided by (Responsible Party):
Dr Pierre KALFON, Centre Hospitalier of Chartres
ClinicalTrials.gov Identifier:
NCT01002482
First received: October 26, 2009
Last updated: November 8, 2013
Last verified: November 2013

October 26, 2009
November 8, 2013
October 2009
December 2012   (final data collection date for primary outcome measure)
All-cause 90-day Mortality [ Time Frame: Day 90 ] [ Designated as safety issue: Yes ]
All-cause 90-day mortality [ Time Frame: Day 120 ] [ Designated as safety issue: Yes ]
Complete list of historical versions of study NCT01002482 on ClinicalTrials.gov Archive Site
  • All-cause 28-day Mortality [ Time Frame: Day 28 ] [ Designated as safety issue: Yes ]
  • All-cause Intensive Care Unit Mortality [ Time Frame: Date of discharge from the ICU ] [ Designated as safety issue: No ]
  • All-cause In-hospital Mortality [ Time Frame: Day of discharge from the hospital ] [ Designated as safety issue: No ]
  • Intensive Care Unit Free Days [ Time Frame: 28 days ] [ Designated as safety issue: No ]
    Intensive care unit free days was 28-day-ICU-free-days i.e. was calculated by subtracting the actual ICU duration in days from 28 with patients who died at day 28 or before being assigned 0 free-days and those who had a stay in ICU of 28 days or more being also assigned 0 free-days
  • Time Spent in Blood Glucose Target [ Time Frame: Day of discharge from the ICU ] [ Designated as safety issue: No ]
  • Severe Hypoglycemia [ Time Frame: Date of discharge from the ICU ] [ Designated as safety issue: Yes ]
    Number of patients with severe biological hypoglycemia (defined as blood glucose of 40 mg per deciliter or less)regardless of clinical signs
  • Hospital Length of Stay [ Time Frame: Date of discharge from the hospital ] [ Designated as safety issue: No ]
  • Intensive Care Unit Length of Stay [ Time Frame: Date of discharge from the ICU ] [ Designated as safety issue: No ]
  • Incidence of Nosocomial Bacteriemia [ Time Frame: Date of discharge from the ICU ] [ Designated as safety issue: Yes ]
  • All-cause 28-day mortality [ Time Frame: Day 120 ] [ Designated as safety issue: Yes ]
  • All-cause Intensive Care Unit mortality [ Time Frame: Day 120 ] [ Designated as safety issue: No ]
  • All-cause in-hospital mortality [ Time Frame: Day 120 ] [ Designated as safety issue: No ]
  • Intensive care unit free days [ Time Frame: Day 90 ] [ Designated as safety issue: No ]
  • Time spent in blood glucose target [ Time Frame: Day of discharge from the ICU ] [ Designated as safety issue: No ]
  • Incidence and severity of hypoglycemia [ Time Frame: Day 120 ] [ Designated as safety issue: Yes ]
  • Hospital Length of Stay [ Time Frame: Day 120 ] [ Designated as safety issue: No ]
  • Intensive Care Unit Length of Stay [ Time Frame: Day 120 ] [ Designated as safety issue: No ]
  • Incidence of Nosocomial Bacteriemia [ Time Frame: Day 120 ] [ Designated as safety issue: Yes ]
Not Provided
Not Provided
 
Computerized Glucose Control in Critically Ill Patients
Impact of the Use of a Computerized Protocol for Glucose Control Named CGAOtm on the Outcome of Critically Ill Patients

The aim of the study is to determine whether the use of the CGAOtm software is associated with a decrease in 90-day mortality when compared with the use of standard care methods for glucose control with target blood glucose levels inferior to 180 mg/dl. The CGAOtm software is designed to assist physicians and nurses in achieving tight glucose control (defined by a target for blood glucose levels between 80 and 110 mg/dl) in critically ill patients.

Hyperglycemia in response to critical illness has long been associated with adverse outcomes.

In 2001, the first "Leuven study", a randomized controlled trial conducted in surgical intensive care patients comparing a strategy based on a nurse-driven protocol for insulin therapy in order to maintain normal blood glucose levels [80 - 110 mg/dl] with standard care defined at the time as intravenous insulin started only when blood glucose level exceeded 215 mg/dl and then adjusted to keep blood glucose level between 180 and 200 mg/dl, showed a reduction in hospital mortality by one third.

The results of this trial have been enthusiastically received and rapidly incorporated into guidelines, such as the Surviving Sepsis Campaign in 2004, and now endorsed internationally by numerous professional societies.

However, subsequent randomized controlled trials have failed to confirm a mortality benefit with intensive insulin therapy among critically ill patients, in whom stress hypoglycemia is common. Moreover the Normoglycemia in Intensive Care Evaluation - Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study, an international multicentre trial involving 6104 patients, the largest trial of insulin therapy to date, showed a lower 90-day mortality in the control group targeted blood glucose levels inferior to 180 mg/dl when compared to the intervention group with tight glucose control [80 - 110 mg/dl].

In addition, many studies and meta-analyses have reported high rates of hypoglycemia with tight glucose control. Consequently, considerable controversy has emerged as to whether tight glucose control is warranted in all critically ill patients especially as tight glucose control (without appropriate computer protocol) causes a significant increase in nurse workload.

The conflicting results between the first Leuven study and the NICE-SUGAR study could be explained by numerous differences between the two trials : the specific method (algorithms, compliance of nurses and physicians with recommendations, etc) used to achieve tight glucose control in each randomized control trial could be a major issue.

Several experimental and observational studies have highlighted the possible negative impact of glucose variability (large fluctuations in blood glucose possibly with undetected hypoglycemia and hypokalemia alternating with hyperglycemia) when implementing tight glucose control, be it due to the intrinsic properties of the algorithms used, technical factors (errors in measurements of the blood glucose level or lack of control over intravenous insulin therapy) or human factors (delay in performing glucose measurements or non respect of recommendations not based on clinical expertise but as a consequence of insufficient training inducing a lack of confidence in the algorithms by inexperienced nurses).

Therefore, remaining concerns about the best way to achieve glucose control in the ICU reduce the impact of conclusions of all of the recent randomized controlled trials on tight glucose control : are the negative results due to the concept, tight glucose control with intensive insulin therapy in critically ill patients in order to reduce the toxicity of high blood glucose levels, or are the negative results mainly due to specific methods used for achieving tight glucose control ? In most cases the methods used in clinical trials were never tested in numerical patients according to existing and validated models (in SILICO expertise) before implementing them in clinical practice on real patients.

Particularly, whether the use of a clinical computerized decision-support system (CDSS) designed for achieving tight glucose control in various ICU settings, and fine-tuned to reduce glucose variability, without increasing the incidence of severe hypoglycemia nor the nurse workload, has an impact on the outcome of patients staying at least three days in an ICU remains to be tested.

Among the different CDSS, the CGAOtm software has been developed to standardize different aspects of glucose control in an ICU setting based on 1) explicit replicable recommendations following each blood glucose level measurement concerning insulin rates and time to next measurement, 2) reminders and alerts and 3) various graphic tools, trends, and individual on-line data aiming to increase the confidence of the nursing staff in the computer protocol and therefore their adherence, to reduce necessary training time, and to give physicians and nurses a way to control the tight glucose control process during the whole ICU stay. Moreover, the CGAOtm software is designed to take into account irregular sampling, saturations, and some precision and stability issues.

The aim of the study is to evaluate the capability of the CGAOtm software to reduce 90-day mortality in a mixed ICU population of patients requiring intensive care for at least three days.

Sample size and power calculations. The expected all cause 90-day mortality in the control group is 25 % (identical to the observed all cause 90-day mortality in the control group of the NICE-SUGAR trial). Considering that all cause 90-day mortality in the experimental group (computer protocol group) is expected to be 22 % (absolute reduction of 3 %), considering an alpha risk and a beta risk respectively of 0.05 and 0.20 and three intermediate analyses performed according to the O'Brien-Fleming design, 3,211 patients per treatment arms are needed and will be recruited from the participating 60 centres, all located in France.

Interventional
Phase 3
Allocation: Randomized
Endpoint Classification: Safety/Efficacy Study
Intervention Model: Parallel Assignment
Masking: Open Label
Primary Purpose: Treatment
  • Hyperglycemia
  • Critical Illness
  • Device: CGAO-based Glucose Control

    Use of a clinical computerized decision-support system named CGAOtm designed to achieve tight glucose control in various ICU settings, and fine-tuned to reduce glucose variability without increasing the incidence of severe hypoglycemia or nurse workload.

    CGAOtm is based on explicit replicable recommendations following each blood glucose measurement for insulin rates and time to next measurement, and reminders, alerts, graphic tools, trends, and individual on-line data aimed at increasing confidence of the nursing staff in the computer protocol and giving care staff a method for controlling the process during the whole ICU stay, according to a "human-in-the-loop" approach.

    The algorithm used in the CGAOtm software for the calculation of the recommended insulin rates derived from a PID (Proportional-integral-derivative) controller, a generic control loop feedback mechanism widely used in industrial control.

    Other Name: CGAO, LC_CGAO version1
  • Device: Standard-Care Glucose Control
    Patients in the control group will receive conventional insulin therapy using the "usual care" protocol of each participating centre (already used in the centre before the beginning of the trial and targeting blood glucose levels inferior to 180 mg/dl).
    Other Name: Usual care
  • Experimental: CGAO-based Glucose Control
    Use of a Computerized Protocol fot Tight Glycemic Control named CGAO software in order to maintain Blood Glucose Levels between 4.4 and 6.1 mmol/l.
    Intervention: Device: CGAO-based Glucose Control
  • Active Comparator: Standard-Care Glucose Gontrol
    Use of Standard-Care Methods for Glucose Control targeting Blood Glucose Levels inferior to 10 mmol/l.
    Intervention: Device: Standard-Care Glucose Control

*   Includes publications given by the data provider as well as publications identified by ClinicalTrials.gov Identifier (NCT Number) in Medline.
 
Completed
2684
April 2013
December 2012   (final data collection date for primary outcome measure)

Inclusion Criteria:

  • At time of the patient's admission to the ICU, the treating ICU specialist expects the patient will require treatment in the ICU that extends beyond the calendar day following the day of admission.

Exclusion Criteria:

  • Age < 18 years or patient under guardianship.
  • Pregnancy.
  • Moribund patient or imminent death in the ICU (e.g. patient expected to die in the ICU within 24 hours).
  • At time of the patient's admission, the treating physicians are not committed tu full supportive care.
  • Patient admitted to the ICU for treatment of diabetic ketoacidosis or hyperosmolar state.
  • Patient admitted to the ICU for hypoglycemia.
  • Patient thought to be at abnormally high risk of suffering hypoglycemia (e.g. known insulin secreting tumor or history of unexplained or recurrent hypoglycemia or fulminant hepatic failure).
  • Patient who have suffered hypoglycemia without documented full neurological recovery
  • Patient is expected to be eating before the end of the day following admission.
  • Patient previously enrolled in the CGAO-REA study.
Both
18 Years and older
No
Contact information is only displayed when the study is recruiting subjects
France
 
NCT01002482
CGAO-REA-01
Yes
Dr Pierre KALFON, Centre Hospitalier of Chartres
Centre Hospitalier of Chartres
  • Société Française d'Anesthésie et de Réanimation
  • Baxter Healthcare Corporation
Principal Investigator: Pierre Kalfon, MD Centre Hospitalier de Chartres
Study Director: Bruno Riou, MD PhD G.H.U. Est, C.H.U. Pitié-Salpétriêre
Study Chair: Djillali Annane, MD PhD G.H.U. Ouest, Hôpital Raymond Poincaré
Study Chair: Jean Chastre, MD PhD G.H.U. Est, Pitié-Salpétriêre
Study Chair: Pierre-François Dequin, MD PhD CHRU Tours
Study Chair: Hervé Dupont, MD PhD CHRU Amiens
Study Chair: Carole Ichai, MD PhD CHRU de Nice
Study Chair: Yannick Malledant, MD PhD CHRU Rennes
Study Chair: Philippe Montravers, MD PhD G.H.U. Nord Bichat-Claude Bernard
Centre Hospitalier of Chartres
November 2013

ICMJE     Data element required by the International Committee of Medical Journal Editors and the World Health Organization ICTRP