Trial record 8 of 128 for:    Deep Brain Stimulation for Parkinson's Disease

DBS Under General Anesthesia: Comparison To The Standard Technique

This study is ongoing, but not recruiting participants.
Sponsor:
Information provided by (Responsible Party):
St. Joseph's Hospital and Medical Center, Phoenix
ClinicalTrials.gov Identifier:
NCT01997398
First received: November 18, 2013
Last updated: November 27, 2013
Last verified: November 2013
  Purpose

There is a growing trend in functional neurosurgery toward direct anatomical targeting for deep brain stimulation (DBS). This study describes a method and reports the initial experience placing DBS electrodes under general anesthesia without the use of microelectrode recordings (MER), using a portable head CT scanner to verify accuracy intra-operatively.


Condition
Parkinson's Disease

Study Type: Observational
Study Design: Observational Model: Case-Only
Time Perspective: Retrospective
Official Title: DBS Under General Anesthesia Without Neurophysiology: Initial Experience and Comparison To The Standard Technique

Resource links provided by NLM:


Further study details as provided by St. Joseph's Hospital and Medical Center, Phoenix:

Primary Outcome Measures:
  • Functional outcomes using established metrics for Parkinson's. [ Time Frame: 6 months post-operatively ] [ Designated as safety issue: No ]
    Motor function: (Unified Parkinson's Disease Rating Scale-3) and quality of life measures(Parkinson's Disease Questionnaire-39.


Secondary Outcome Measures:
  • Verification of lead placement [ Time Frame: 6 weeks post-operatively ] [ Designated as safety issue: No ]
    Follow-up MRI imaging will allows verification that the true position of the DBS leads match where it was thought the leads were based on the intraoperative CT scan that was fused to the preoperative MRI.


Estimated Enrollment: 100
Study Start Date: November 2012
Estimated Study Completion Date: July 2015
Estimated Primary Completion Date: December 2014 (Final data collection date for primary outcome measure)
Detailed Description:

Deep brain stimulation (DBS) is an established therapy for Parkinson's disease and tremor. The therapy was first introduced in the late 1980s, and was FDA approved in 1997. Over 100,000 patients have been treated with DBS, and the benefits have been confirmed through multicenter randomized controlled trials.

Traditional DBS is performed with the patient awake. Parkinson's patients are required to be off their Parkinson's medicine during awake DBS, and single-unit cellular recordings are performed to map the intended target. Electrophysiological mapping can require multiple brain penetrations. The surgery can last 4-6 hours. The surgeon uses a local anesthetic to numb the tissue where the incision is made, and mild sedatives are administered to ward off anxiety. The prospect of being awake on the operating table for brain surgery concerns some patients, as does the requirement to be off medicine.

There is growing interest in performing DBS under general anesthesia, whereby targets are selected anatomically (i.e., on MRI) rather than physiologically . So-called "asleep DBS" is performed with the patient under general anesthesia, and uses intraoperative CT imaging both to target and to verify accurate placement of DBS electrodes at the time of surgery. Asleep DBS eliminates the need for the patient to be kept awake and off medicine. The goal of Asleep DBS is to accurately place the electrodes at the target selected by the surgeon preoperatively, and this goal is accomplished through intraoperative imaging. Electrophysiological mapping is not performed.

The Asleep DBS program at Barrow Neurological Institute / SJHMC started in March 2012; the second institution world-wide to adopt the asleep technique developed by Dr. Kim Burchiel. Other institutions have performed asleep DBS within an MRI magnet to visualize the placement of the electrode. The "Burchiel technique" relies upon MRI-CT fusion algorithms to superimpose the leads, seen on CT, on the MRI which was used for planning.

While asleep DBS improves the patient experience, it is incumbent upon us to demonstrate that the functional outcomes are equivalent to those reported for traditional "awake" DBS. Further, despite common use of MRI-CT fusion, which is available on our neuronavigation systems, the evidence supporting this modality comes from the 1990s, primarily from Gamma Knife literature.

This study will include functional outcomes using established metrics for Parkinson's, capturing both motor function (Unified Parkinson's Disease Rating Scale) and quality of life (Parkinson's Disease Questionnaire-39). In addition, follow-up MRI imaging will allow us to verify that the true position of the DBS leads matches where we thought the leads were based on the intraoperative CT scan that was fused to the preoperative MRI. In other words, there is an error in placement that we see at the time of surgery (if we our inaccuracy is over 2 mm, we reposition the DBS lead). There is also an inherent inaccuracy with CT-MRI fusion. If these inaccuracies are compounded such that where we think we are at the time of surgery is far from where we actually are (as seen on the follow-up MRI of the brain), then CT-MRI fusion is not reliable and should not be used to verify lead placement.

  Eligibility

Ages Eligible for Study:   18 Years and older
Genders Eligible for Study:   Both
Accepts Healthy Volunteers:   No
Sampling Method:   Non-Probability Sample
Study Population

Patients will be selected by CPT codes corresponding to bilateral DBS electrode placement placed under general anesthesia with Leksell sterotactic navigation, portable CT and without the use of microelectrode recordings (MER).

Criteria

Inclusion Criteria:

  • Patient's who have undergone DBS surgery under general anesthesia without electrophysiology, utilizing a portable head CT scanner to verify accuracy intra-operatively.

Exclusion Criteria:

  • Patient's who have undergone DBS surgery awake, without general anesthesia and with electrophysiology.
  Contacts and Locations
Choosing to participate in a study is an important personal decision. Talk with your doctor and family members or friends about deciding to join a study. To learn more about this study, you or your doctor may contact the study research staff using the Contacts provided below. For general information, see Learn About Clinical Studies.

Please refer to this study by its ClinicalTrials.gov identifier: NCT01997398

Locations
United States, Arizona
St. Joseph's Hospiatl & Medical Center / Barrow Neurological Institute
Phoenix, Arizona, United States, 85013
Sponsors and Collaborators
St. Joseph's Hospital and Medical Center, Phoenix
Investigators
Principal Investigator: Francisco A Ponce, MD BARROW NEUROLOGICAL INSTITUTE / SJHMC
  More Information

No publications provided

Responsible Party: St. Joseph's Hospital and Medical Center, Phoenix
ClinicalTrials.gov Identifier: NCT01997398     History of Changes
Other Study ID Numbers: 12BN123
Study First Received: November 18, 2013
Last Updated: November 27, 2013
Health Authority: United States: Institutional Review Board

Keywords provided by St. Joseph's Hospital and Medical Center, Phoenix:
Deep brain stimulation surgery under general anesthesia
Deep brain stimulation target accuracy
Deep brain stimulation for Parkinsons's disease
Deep brain stimulation functional outcomes
Deep brain stimulation quality of life outcomes

Additional relevant MeSH terms:
Parkinson Disease
Parkinsonian Disorders
Basal Ganglia Diseases
Brain Diseases
Central Nervous System Diseases
Nervous System Diseases
Movement Disorders
Neurodegenerative Diseases
Anesthetics
Central Nervous System Depressants
Physiological Effects of Drugs
Pharmacologic Actions
Central Nervous System Agents
Therapeutic Uses

ClinicalTrials.gov processed this record on July 24, 2014